FUEL SYSTEM

CONTENTS

page		page	
	3.3L MULTI-POINT FUEL INJECTION —GENERAL DIAGNOSIS3.3L MULTI-POINT FUEL INJECTION —SERVICE PROCEDURES3.3L MULTI-POINT FUEL INJECTION —SYSTEM OPERATION—SYSTEM OPERATION ACCELERATOR PEDAL AND THROTTL CABLEFUEL DELIVERY SYSTEM FUEL TANK GENERAL INFORMATION SPECIFICATIONS	34 45 22 64 75	-GENERAL DIAGNOSIS 2.5L SINGLE POINT FUEL INJECTION -SERVICE PROCEDURES 2.5L SINGLE POINT FUEL INJECTION -SYSTEM OPERATION 3.0L MULTI-POINT FUEL INJECTION -GENERAL DIAGNOSIS 3.0L MULTI-POINT FUEL INJECTION -SERVICE PROCEDURES 3.0L MULTI-POINT FUEL INJECTION

GENERAL INFORMATION

Throughout this group, references may be made to a particular vehicle by letter or number designation. A chart showing the breakdown of these designations is included in the Introduction Section at the front of this service manual.

The Fuel System consists of the fuel tank, fuel pump, fuel filter, throttle body, fuel injectors, fuel lines and vacuum lines.

The Fuel Delivery System consists of the fuel pump module, fuel filter, fuel lines and fuel hoses.

The Fuel Tank Assembly consists of the fuel tank, fuel pump module, filler tube, and a pressure-vacuum filler cap.

The Evaporation Control System, is also considered part of the fuel system. The system reduces the emission of fuel vapor into the atmosphere.

The description and function of the Evaporation Control System is found in Group 25 of this manual.

FUEL REQUIREMENTS

Your vehicle was designed to meet all emission regulations and provide excellent fuel economy when using high quality unleaded gasoline. **Only use unleaded gasoline with a minimum posted octane of 87.**

Light spark knock (ping) at low engine speeds is not harmful to your engine. However, continued heavy spark knock at high speeds can cause damage and should be reported to your dealer immediately. Engine damage resulting from operating with a heavy spark knock may not be covered by the new vehicle warranty. In addition to using unleaded gasoline with the proper octane rating, gasolines that contain detergents, corrosion and stability additives are recommended. Using gasolines that have these additives will help improve fuel economy, reduce emissions, and maintain vehicle performance. Generally, premium unleaded gasolines contain more additive than regular unleaded.

Poor quality gasoline can cause problems such as hard starting, stalling, and stumble. If you experience these problems, try another brand of gasoline before considering service for the vehicle.

GASOLINE/OXYGENATE BLENDS

Some fuel suppliers blend gasoline with materials that contain oxygen such as alcohol, MTBE (Methyl Tertiary Butyl Ether) and ETBE (Ethyl Tertiary Butyl Ether). The type and amount of oxygenate used in the blend is important.

The following are generally used in gasoline blends:

Ethanol - (Ethyl or Grain Alcohol) properly blended, is used as a mixture of 10 percent ethanol and 90 percent gasoline. Gasoline blended with ethanol may be used in your vehicle.

Methanol - (Methyl or Wood Alcohol) is used in a variety of concentrations when blended with unleaded gasoline. You may find fuels containing 3 percent or more methanol along with other alcohols called cosolvents.

Do not use gasolines containing Methanol.

Use of methanol/gasoline blends may result in starting and driveability problems and damage critical fuel system components.

Problems that are the result of using methanol/gasoline blends are not the responsibility of Chrysler Motors and may not be covered by the new vehicle warranty.

MTBE/ETBE - Gasoline and MTBE (Methyl Tertiary Butyl Ether) blends are a mixture of unleaded gasoline blended and up to 15 percent MTBE. Gasoline and ETBE (Ethyl Tertiary Butly Ether) are blends of gasoline and up to 17 percent ETBE. Gasoline blended with MTBE or ETBE may be used in your vehicle.

Clean Air Gasoline

Many gasolines are now being blended that contribute to cleaner air, especially in those areas of the country where pollution levels are high. These new blends provide a cleaner burning fuel and some are referred to as reformulated gasoline.

In areas of the country where carbon monoxide levels are high, gasolines are being treated with oxygenated materials such as ETBE, MTBE and ethanol. The use of gasoline blended with these materials also contributes to cleaner air.

Chrysler Motors supports these efforts toward cleaner air and recommends that you use these gasolines as they become available.

Materials Added to Fuel

Indiscriminate use of fuel system cleaning agents should be avoided. Many of these materials intended for gum and varnish removal may contain active solvents of similar ingredients that can be harmful to fuel system gasket and diaphragm materials.

page

9114-147

FUEL DELIVERY SYSTEM

INDEX

page

Chassis Fuel Tubes 11	
Fuel Filter—All Wheel Drive	
Fuel Filter—Front Wheel Drive)
Fuel Hoses, Clamps, and Quick Connect Fittings 3	3
Fuel Pump Module Installation—All Wheel Drive 10)
Fuel Pump Module Removal—All Wheel Drive 9	
Fuel Pump Pressure Test—2.5L and 3.0L Engines . 5	5
Fuel Pump Pressure Test—3.3L Engine	

GENERAL INFORMATION

The front wheel drive van and the all wheel drive van have different fuel delivery systems. The front wheel drive van uses a metal fuel tank mounted in the rear of the vehicle. The all wheel drive van has a plastic fuel tank located on the left side of the vehicle. The fuel pumps and the chassis fuel tubes used on front wheel drive vans are different from those used on all wheel drive vans.

Both the front wheel drive and all wheel drive fuel pump modules have an internal fuel reservoir, a fuel level sending unit, and a fuel strainer mounted on the pump housing. Both systems use quick connect fittings at the fuel tank and engine. The fuel filter location is the same for both front wheel drive and all wheel drive vehicles.

FUEL SYSTEM PRESSURE RELEASE PROCEDURE

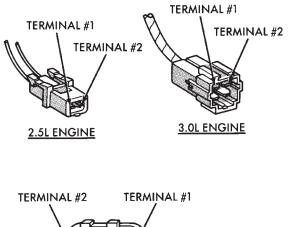
(1) Loosen fuel filler cap to release fuel tank pressure.

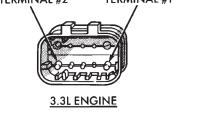
(2) Disconnect injector wiring harness from engine or main harness.

(3) Connect a jumper wire from terminal Number 1 (ground) of the injector harness (Fig. 1) to engine ground.

(4) Connect one end of a jumper wire to terminal Number 2 (positive) of the injector harness (Fig. 1). Connect the other end to the positive post of the battery for no longer than 5 seconds. This releases system pressure.

- (5) Remove jumper wires.
- (6) Continue fuel system service.


FUEL HOSES, CLAMPS, AND QUICK CONNECT FITTINGS


HOSES AND CLAMPS

Inspect all hose connections (clamps and quick connect fittings) for completeness and leaks. Replace cracked, scuffed, or swelled hoses. Replace hoses that rub against other vehicle components or show sign of wear.

Fuel injected vehicles use specially constructed hoses. When replacing hoses, only use hoses marked EFM/ EFI.

Fuel Pump/Level Sending Unit Assembly	
Removal—Front Wheel Drive	
Fuel Pump/Level Unit Assembly	
Fuel Pump/Level Unit Assembly Installation—Front	
Wheel Drive	
Fuel System Pressure Release Procedure 3	
General Information	

Fig. 1 Injector Harness Connectors

When installing hoses, ensure that they are routed away from contact with other vehicle components that could rub against them and cause failure. Avoid contact with clamps or other components that cause abrasions or scuffing. Ensure that rubber hoses are properly routed and avoid heat sources.

The hose clamps have rolled edge to prevent the clamp from cutting into the hose. Only use clamps that are original equipment or equivalent. Other types of clamps may cut into the hoses and cause high pressure fuel leaks. Tighten hose clamps to $1 \text{ N} \bullet \text{m}$ (10 in. lbs.) torque.

QUICK CONNECT FITTINGS

Some fuel lines have quick connect fittings. The fittings are designed to speed up the installation and removal of the fuel lines (Fig. 2).

Quick connect fittings consist of a metal casing, a

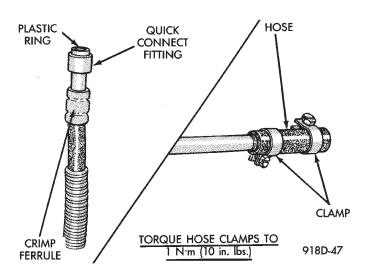


Fig. 2 Quick Connect Fuel Fittings

black plastic release ring, a metal locking retainer, and internal O-rings.

TUBE/FITTING DISASSEMBLY

WARNING: FUEL SYSTEM PRESSURE MUST BE RE-LEASED BEFORE DISCONNECTING ANY FUEL SYS-TEM COMPONENT.

(1) Disconnect the negative battery cable.

(2) Remove the fuel tank gas cap to release fuel tank pressure.

(3) Perform the Fuel System Pressure Release Procedure.

(4) Remove any loose dirt from quick connect fittings.

WARNING: WRAP SHOP TOWELS AROUND HOSES TO CATCH ANY GASOLINE SPILLAGE.

(5) To remove the fuel tube nipple from a quick connect fitting, pull back on the fitting while pushing in on the plastic ring (Fig. 2). To aid in disassembly, an open end wrench may be used to push the plastic ring in.

(6) Cover the quick connector to prevent contamination.

TUBE/FITTING ASSEMBLY

(1) Inspect the quick connect fitting to ensure the black plastic release ring is in the **OUT** position. If the locking retainer is stuck in the **RELEASE** position due to mushrooming of the release ring or dirt accumulation, the fitting should be replaced.

The fuel tube nipples must be lubricated with clean 30 weight engine oil prior to reconnecting the quick-connect fitting.

(2) Lubricate the male end of the fuel tube with 30 weight engine oil.

(3) Insert fuel tube nipple into quick connector fitting. When the fuel tube nipple is inserted into the quick-connect fitting, the shoulder of the nipple is locked in place by the locking retainer and the internal O-rings seal the tube.

(4) Pull back on the quick connect fitting to verify the connection is secure. The tube should be locked in place. If the connection is not complete, make sure the black plastic release is not causing the locking retainer to jam in the release position.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(5) Use the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

TUBE/FITTING SERVICE

If a quick connect fitting needs to be serviced, the following procedure must be followed:

(1) Disconnect the battery negative battery cable.

(2) Perform the Fuel System Pressure Release Procedure.

WARNING: WRAP SHOP TOWELS AROUND HOSES TO CATCH ANY GASOLINE SPILLAGE.

(3) Remove the quick connect fitting from the fuel tube by pushing in on the plastic ring located on the end of the fitting. Gently pull the fitting from the fuel tube.

(4) Cut off the crimped ferrules at each end of the hose, taking care not to damage the quick connect fitting or the fuel tube.

(5) Discard the ferrules, hose and damaged quick connect fitting.

(6) Replace the hose using hose marked EFM/EFI.

(7) Replace the quick connect fittings (if necessary) with the correct size and type.

(8) Attach the replacement hose to the quick connect fitting and fuel tube using the correct hose clamps. The hose clamps used are of a special rolled edge construction to prevent the edge of the clamp cutting into the hose. Only original equipment clamps or equivalent may be used in this system. Other types of clamps may cut into the hoses and cause high pressure fuel leaks.

(9) Tighten hose clamps to 1 Nom (10 in. lbs.) torque.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(10) Use the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

FUEL PUMP/LEVEL UNIT ASSEMBLY

The all wheel drive and front wheel drive vehicles use different fuel pumps. The fuel pump/level unit assembly used on front wheel drive systems consists of the fuel pump, reservoir body, and level unit (Fig. 3).

All wheel drive vehicles have a fuel pump module (Fig. 4). The module contains the fuel pump, level unit and reservoir body. The module is spring loaded. The module must be pushed down to install it in the fuel tank.

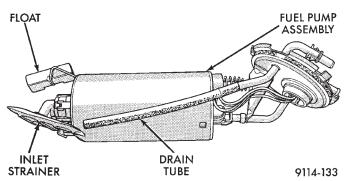


Fig. 3 Fuel Pump/Level Unit—Front Wheel Drive

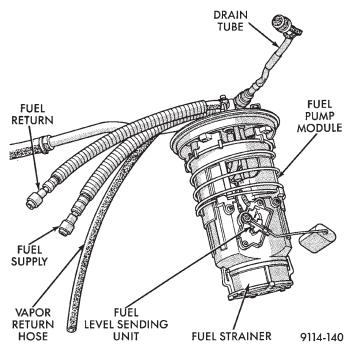


Fig. 4 Fuel Pump Module—All Wheel Drive

On both systems, the reservoir body replaces an internal fuel tank reservoir. The purpose of the reservoir is to provide fuel at the pump intake during all driving conditions, especially those when low fuel levels are present.

The fuel pump used in both systems is a positive displacement, gerotor immersible pump with a permanent magnet electric motor. The fuel is drawn in through an inlet strainer and pushed through the electric motor to the outlet. The pump module contains two check valves. One valve is used to relieve internal fuel pump pressure and regulate maximum pump output. The other check valve is located in the fuel return line. It restricts fuel movement in reverse direction when the pump is not operating. Voltage to operate the pump is supplied through the fuel pump relay.

The level unit is attached to the side of the fuel pump assembly. The level unit consists of a float, an arm, and a variable resistor. As the fuel level increases, the float and arm move up. This decreases the sending unit resistance, causing the fuel gauge on the instrument panel to read full.

The maximum output pressure of both front wheel drive and all wheel drive fuel pumps is approximately 930 kPa (135 psi).

The pressure regulator adjusts system pressure. On 3.0L and 3.3L engines the pressure regulator is mounted on the fuel rail. On 2.5L engines the regulator is mounted on the throttle body. Fuel system pressures are shown in the Fuel System Pressure chart.

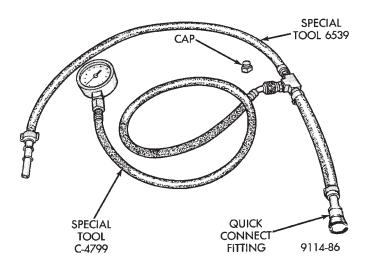
FUEL SYSTEM PRESSURE—WITHOUT VACUUM APPLIED TO PRESSURE REGULATOR

2.5L TBI	265 kPa	39 psi
3.0L	330 kPa	48 psi
3.3L	330 kPa	48 psi

9114-134

Fuel system pressure must be released before servicing any fuel system component. Perform the Fuel System Pressure Release procedure.

FUEL PUMP PRESSURE TEST—2.5L and 3.0L EN-GINES


WARNING: FUEL SYSTEM PRESSURE MUST BE RE-LEASED BEFORE A FUEL SYSTEM HOSE OR COM-PONENT IS DISCONNECTED.

The specifications listed in the Fuel System Pressure Chart are determined without vacuum applied to the fuel pressure regulator.

(1) Perform fuel system pressure release.

(2) Remove fuel supply hose quick connector from the chassis lines (at the engine). Refer to Quick Connect Fittings in this section.

(3) Connect Fuel Pressure Gauge C-4799 to Fuel Pressure Test Adapter 6539 (Fig. 5). Install the adapter between fuel supply hose and chassis fuel line assembly.

Fig. 5 Gauge and Adapter

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(4) Place the ignition key in the ON position. Using the DRB II tester, access ASD Fuel System Test. The ASD Fuel System Test will activate the fuel pump and pressurize the system.

If the gauge reads the pressure shown in the Fuel System Pressure chart, further testing is not required. If pressure is not correct, record the pressure and remove gauge.

If pressure is below specifications, proceed to Fuel System Pressure Below Specifications. If pressure is above specifications, proceed to Fuel System Pressure Above Specifications.

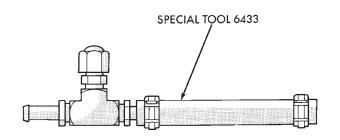
Fuel System Pressure Below Specifications

If the fuel pressure reading in step (4) was below specifications, test the system according to the following procedure.

WARNING: FUEL SYSTEM PRESSURE MUST BE RE-LEASED BEFORE A FUEL SYSTEM HOSE OR COM-PONENT IS DISCONNECTED.

(a) Perform Fuel Pressure Release procedure.

(b) Install Fuel Pressure Gauge C-4799 and Fuel Pressure Adapter 6433 in the fuel supply line (Fig. 6) between the fuel tank and fuel filter.


(c) Using the DRB II, with the ignition key in the ON position, repeat the ASD Fuel System Test.

• If pressure is at least 5 psi higher than reading recorded in step (4), replace fuel filter.

• If no change is observed, gently squeeze return hose. If pressure increases, replace pressure regulator. If the gauge reading does not change when the return hose is squeezed, the problem is either a plugged inlet strainer or defective fuel pump.

Fuel System Pressure Above Specifications

If the fuel pressure reading in step (4) was above

9114-141

Fig. 6 Fuel Pressure Adapter

specifications test the system according to the following procedure.

WARNING: FUEL SYSTEM PRESSURE MUST BE RE-LEASED BEFORE A FUEL SYSTEM HOSE OR COM-PONENT IS DISCONNECTED.

(a) Perform Fuel Pressure Release procedure.

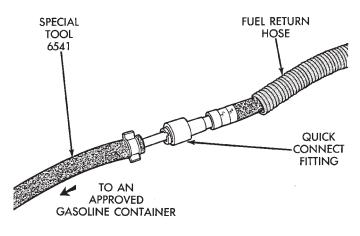
(b) Install Fuel Pressure Gauge C-4799 and Fuel Pressure Adapter 6433 in the fuel supply line (Fig. 6) between the fuel tank and fuel filter.

(c) Remove the fuel return line hose from the fuel pump at fuel tank. Connect Fuel Pressure Test Adapter 6541 to the return line. Place the other end of adapter 6541 into an approved gasoline container (minimum 2 gallon size). All return fuel will flow into container.

(d) Using the DRB II, with the ignition key in the ON position, repeat the ASD Fuel System Test.

• If pressure is now correct, replace fuel pump assembly.

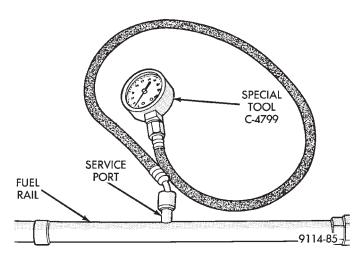
• If pressure is still above specifications, remove fuel return hose from chassis fuel tubes (at engine). Attach Fuel Pressure Test Connect Adapter 6541 to the fuel return hose and place other end of hose in clean container (Fig. 7). Repeat test. If pressure is now correct, check for restricted fuel return line. If no change is observed, replace fuel pressure regulator.


FUEL PUMP PRESSURE TEST—3.3L ENGINE

WARNING: FUEL SYSTEM PRESSURE MUST BE RE-LEASED BEFORE A FUEL SYSTEM HOSE OR COM-PONENT IS DISCONNECTED.

The specifications listed in the Fuel System Pressure Chart are determined without vacuum applied to the fuel pressure regulator.

(1) Fuel system pressure must be released each time a fuel hose is to be disconnected. Perform fuel system pressure release.


(2) Remove protective cover from service valve on the fuel rail.

9114-88

Fig. 7 Fuel Return Connection

(3) Connect Fuel Pressure Gauge C-4799 to fuel rail service valve. (Fig. 8)

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(4) Place the ignition key in the ON position. Using the DRB II tester, access ASD Fuel System Test. The ASD Fuel System Test will activate the fuel pump and pressurize the system.

If the gauge reading the specification listed in the Fuel System Pressure chart, further testing is not required. If pressure is not correct, record the pressure and remove gauge. Use the DRB II ASD Fuel System Test to pressurize the system. Ensure fuel does not leak from the fuel rail service valve. Reinstall protective cover onto fuel rail service valve.

If pressure is below specifications, proceed to Fuel System Pressure Below Specifications. If pressure is above specifications, proceed to Fuel System Pressure Above Specifications.

Fuel System Pressure Below Specifications

If the fuel pressure reading in step (4) was below specifications, test the system according to the following procedure.

WARNING: FUEL SYSTEM PRESSURE MUST BE RE-LEASED BEFORE A FUEL SYSTEM HOSE OR COM-PONENT IS DISCONNECTED.

(a) Perform Fuel Pressure Release procedure.

(b) Install Fuel Pressure Gauge C-4799 and Fuel Pressure Adapter 6433 in the fuel supply line between the fuel tank and fuel filter (Fig. 6).

(c) Using the DRB II, with the ignition key in the ON position, repeat the ASD Fuel System Test.

• If pressure is at least 5 psi higher than reading recorded in step (4), replace fuel filter.

• If no change is observed, gently squeeze return hose. If pressure increases, replace pressure regulator. If the gauge reading does not change when the return hose is squeezed, the problem is either a plugged inlet strainer or defective fuel pump.

Fuel System Pressure Above Specifications

If the fuel pressure reading in step (4) was above specifications test the system according to the following procedure.

WARNING: FUEL SYSTEM PRESSURE MUST BE RE-LEASED BEFORE A FUEL SYSTEM HOSE OR COM-PONENT IS DISCONNECTED.

(a) Perform Fuel Pressure Release procedure.

(b) Install Fuel Pressure Gauge C-4799 and Fuel Pressure Adapter 6433 in the fuel supply line (Fig. 6) between the fuel tank and fuel filter.

(c) Remove the fuel return line hose from the fuel pump at fuel tank. Connect Fuel Pressure Test Adapter 6541 to the return line. Place the other end of adapter 6541 into an approved gasoline container (minimum 2 gallon size). All return fuel will flow into container.

(d) Using the DRB II, with the ignition key in the ON position, repeat the ASD Fuel System Test.

• If pressure is now correct, replace fuel pump assembly.

• If pressure is still above specifications, remove fuel return hose from chassis fuel tubes (at engine). Attach Fuel Pressure Test Connect Adapter 6541 to the fuel return hose and place other end of hose in clean container (Fig. 7). Repeat test. If pressure is now correct, check for restricted fuel return line. If no change is observed, replace fuel pressure regulator.

FUEL PUMP/LEVEL SENDING UNIT ASSEMBLY REMOVAL—FRONT WHEEL DRIVE

The fuel tank must be removed to service the fuel pump/level sending unit assembly. Refer to Fuel Tank Section for fuel tank removal.

(1) Using a hammer and a brass drift, carefully tap the lock ring counterclockwise to release assembly (Fig. 9).

(2) Remove fuel pump/level sender assembly and O-ring seal from tank. Discard old seal.

(3) Prevent dirt from entering the tank by covering the fuel tank openings.

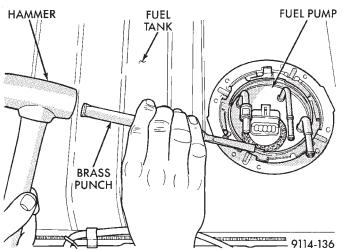


Fig. 9 Fuel Pump Service—Front Wheel Drive

FUEL PUMP INLET STRAINER REMOVAL—FRONT WHEEL DRIVE

(1) Gently bend locking tabs on fuel pump reservoir assembly to clear locking tangs on the fuel pump filter. (Fig. 10)

(2) Remove strainer.

(3) Remove strainer O-ring from the fuel pump reservoir body.

(4) If the inlet strainer is plugged or dirty, clean the fuel tank.

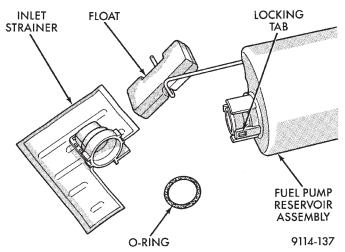
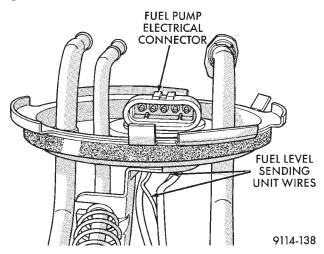


Fig. 10 Fuel Pump Inlet Strainer—Front Wheel Drive

FUEL PUMP INLET STRAINER INSTALLATION—FRONT WHEEL DRIVE

(1) Lightly lubricate the strainer O-ring with Mopar Silicone Spray Lube.

(2) Insert strainer O-ring into outlet of strainer. The O-ring must sit evenly on the step inside the filter outlet.


(3) Push strainer onto the inlet of the fuel pump reservoir body. Ensure the locking tabs on the reservoir body lock over the locking tangs on the filter.

FUEL LEVEL SENDING UNIT DIAGNOSIS

Refer to Group 8—Electrical

FUEL LEVEL SENDING UNIT REMOVAL—FRONT WHEEL DRIVE

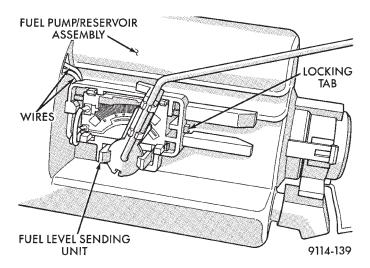
(1) Bend locking tab and remove electrical connector from the bottom of the fuel pump electrical connector (Fig. 11).

Fig. 11 Fuel Pump Electrical Connector—Front Wheel Drive

(2) Remove terminal locking cover (red). Remove sending unit wiring terminals from the electrical connector.

(3) Use a wide blade screwdriver to release the sending unit locking tab (Fig. 12). Use another wide blade screwdriver to push on the sending unit body.

(4) Slide the entire fuel level sending unit off of the fuel pump/reservoir body.


(5) Carefully pull the wires through the coverplate and reservoir body.

FUEL LEVEL SENDING UNIT INSTALLATION—FRONT WHEEL DRIVE

(1) Carefully bend the level unit wires and lay into the slot on the back of the level unit.

(2) Slide the level unit into the slots on the fuel pump/reservoir assembly. Feed the wires through the triangular hole in the fuel pump/reservoir body. Make sure that the tab on the level unit locks into the detente in the fuel pump/reservoir assembly.

- FUEL SYSTEM 14 - 9

Fig. 12 Fuel Level Sending Unit—Front Wheel Drive

(3) Slip wires into tab on the fuel pump/reservoir assembly.

(4) Carefully install the level unit wiring terminals into the electrical connector. Install terminal locking cover.

(5) Install the electrical connector into the bottom of the fuel pump electrical connector. Ensure that the connector is fully locked into position.

FUEL PUMP/LEVEL UNIT ASSEMBLY INSTALLATION—FRONT WHEEL DRIVE

(1) Wipe seal area of tank clean and place a new O-ring seal in position on pump.

(2) Position fuel pump in tank with locking ring.

(3) Using a hammer and brass drift, tap ring around clockwise to lock pump in place.

CAUTION: Over tightening the pump lock ring may result in a leak.

(4) Install tank. Refer to the Fuel Tank Section in this Group.

FUEL PUMP MODULE REMOVAL—ALL WHEEL DRIVE

The fuel tank must be removed to service the fuel pump/level sending unit assembly. Refer to Fuel Tank Section of this Group for fuel tank removal.

(1) Unclip fuel vapor hose and fuel drain hose from fuel tank (Fig. 13).

The fuel pump module is spring loaded. It will rise up slightly when the band clamp is removed.

(2) While holding down on the fuel pump module, remove the band clamp from top of module (Fig. 14).

(3) Remove the fuel pump module from fuel tank. Discard flat rubber seal.

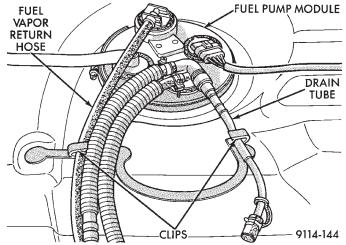


Fig. 13 Hose Tank Clips—All Wheel Drive

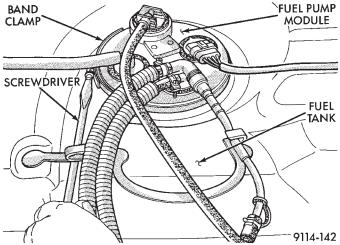


Fig. 14 Band Clamp Removal—All Wheel Drive

FUEL PUMP INLET STRAINER REMOVAL—ALL WHEEL DRIVE

(1) Remove the fuel pump from the fuel tank. Refer to Fuel Pump Module Removal in this section.

(2) Bend locking tabs on the strainer to clear locking tangs on the fuel pump module (Fig. 15).

(3) Remove strainer.

(4) If the strainer is plugged or dirty, clean the fuel tank.

FUEL PUMP INLET STRAINER

INSTALLATION—ALL WHEEL DRIVE

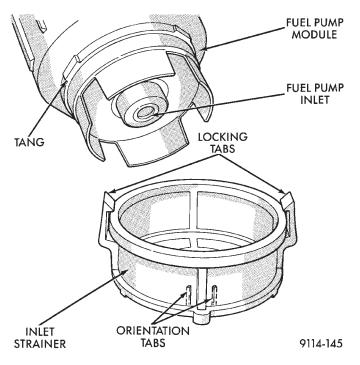
(1) Align the orientation tabs in the strainer with the slot in the bottom of the fuel pump module.

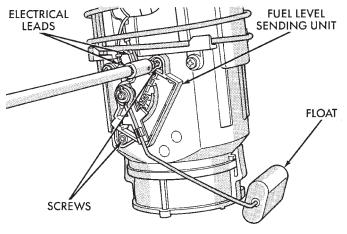
(2) Push strainer onto the inlet of the fuel pump module. Make sure that the locking tabs on the filter snap over the tangs on the pump module.

(3) Install the fuel pump module into the fuel tank. Refer to Fuel Pump Module Installation in this section.

FUEL LEVEL SENDING UNIT DIAGNOSIS

Refer to Group 8—Electrical




Fig. 15 Fuel Strainer Service—All Wheel Drive

FUEL LEVEL SENDING UNIT REMOVAL—ALL WHEEL DRIVE

(1) Remove the fuel pump from the fuel tank. Refer to Fuel Pump Module Removal in this section.

(2) Remove the two screws holding fuel level sending unit in place. (Fig. 16)

(3) Disconnect electrical leads.

9114-146

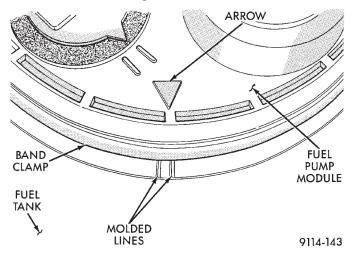
Fig. 16 Fuel Level Sending Unit—All Wheel Drive

FUEL LEVEL SENDING UNIT INSTALLATION—ALL WHEEL DRIVE

(1) Connect electrical leads to the fuel level sending unit.

CAUTION: Do not press against the sending unit during installation.

(2) Install level sending unit and tighten screws.


(3) Install the fuel pump module into the fuel tank. Refer to Fuel Pump Module Installation in this section.

FUEL PUMP MODULE INSTALLATION—ALL WHEEL DRIVE

(1) Wipe clean the seal area of tank. Place a new seal in position on pump.

CAUTION: Fuel pump module must be properly aligned during installation.

(2) Position fuel pump module so that the arrow on the edge of the module is between the two lines molded into the fuel tank (Fig. 17).

Fig. 17 Fuel Pump Module Alignment—All Wheel Drive

The fuel pump module is spring loaded. The module must be held down when installing the band clamp.

(3) Compress fuel pump module. Install band clamp and tighten to 5.0 Nom (40 in. lbs.) torque.

(4) Install fuel tank. Refer to the Fuel Tank Section in this Group.

FUEL FILTER—FRONT WHEEL DRIVE

REMOVAL

WARNING: FUEL SYSTEM PRESSURE MUST BE RE-LEASED BEFORE THE FUEL FILTER IS REMOVED.

(1) Perform fuel system pressure release.

(2) Remove filter retaining screw and remove filter assembly from rail (Fig. 18).

(3) Loosen outlet hose clamp on filter and inlet hose clamp on rear fuel tube.

(4) Wrap a shop towel around hoses to absorb fuel. Remove hoses at filter and fuel tube. Discard clamps.

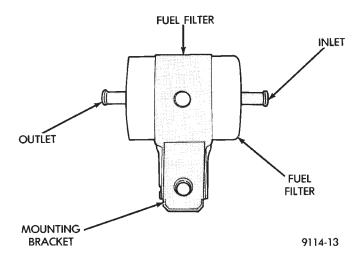


Fig. 18 Fuel Filter—Front Wheel Drive

INSTALLATION

(1) Install inlet hose on fuel tube and tighten new clamp to 1 Nom (10 in. lbs.) torque.

(2) Install outlet hose on filter outlet fitting and torque new clamp to 1 Nom (10 in. lbs.).

(3) Position filter assembly on rail and tighten mounting screw to 8 Nom (75 in. lbs.) torque.

FUEL FILTER—ALL WHEEL DRIVE

REMOVAL

WARNING: FUEL SYSTEM PRESSURE MUST BE RE-LEASED BEFORE THE FUEL FILTER IS REMOVED.

(1) Perform Fuel System Pressure Release procedure.

(2) Remove converter support bracket (Fig. 19).

(3) Remove exhaust pipe heat shield.

(4) Loosen outlet and inlet hose clamps on filter (Fig. 20).

CAUTION: Wrap shop towels around hoses to catch any gasoline spillage.

(5) Remove filter retaining screw and remove filter assembly from rail.

(6) Remove hoses from fuel filter. Discard clamps. *INSTALLATION*

(1) Loose install inlet and outlet fuel hoses to fuel filter.

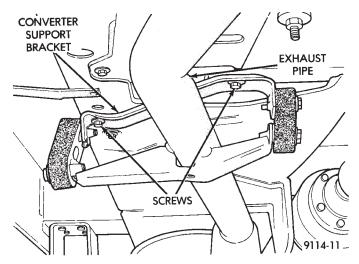
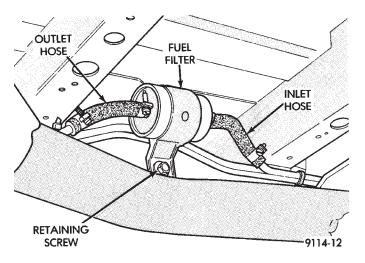
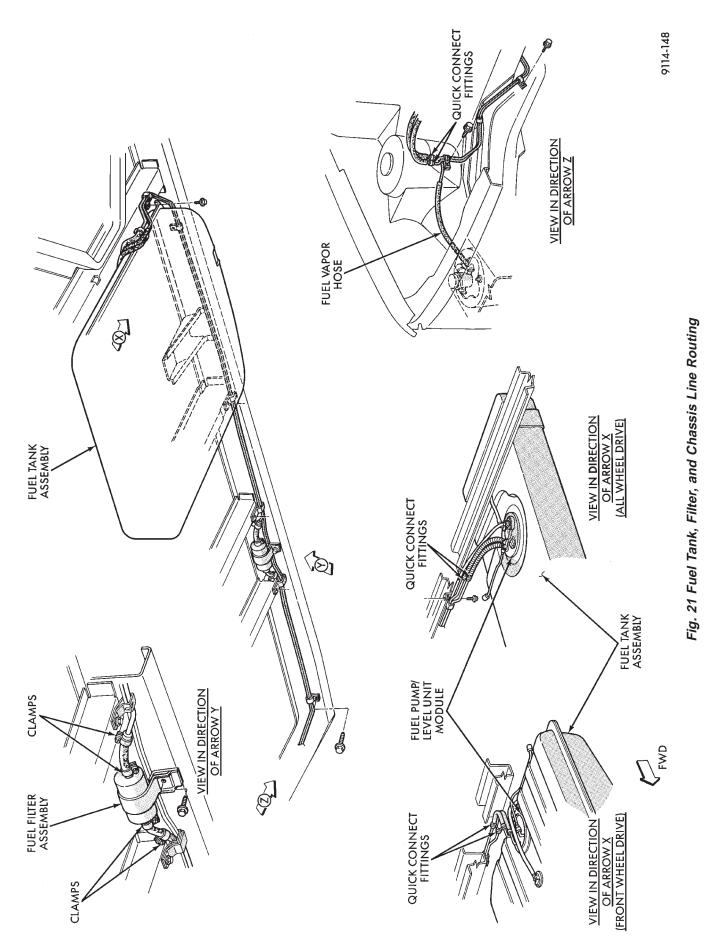



Fig. 19 Support Bracket—All Wheel Drive

Fig. 20 Fuel Filter—All Wheel Drive

(2) Position filter assembly on rail and tighten mounting screw to 8 Nom (75 in.lbs.) torque.


(3) Tighten new fuel hose clamps to 1 Nom (10 in. lbs.) torque.

(4) Install exhaust pipe heat shield.

(5) Install exhaust pipe support bracket.

CHASSIS FUEL TUBES

Fuel system component locations and chassis fuel tube routings are shown in Fig. 21.

FUEL TANK

INDEX

page

Fuel Pump Module—All Wheel Drive	
Fuel Pump/Level Unit—Front Wheel Drive 18	
Fuel System Pressure Release Procedure 13	
Fuel Tank Pressure Relief/Rollover Valve	
—All Wheel Drive 19	
Fuel Tank Pressure Relief/Rollover Valve—Front Wheel	

GENERAL INFORMATION

The fuel tanks of all Chrysler Motors built vehicles are equipped with fuel and vapor controls that allow the vehicle to pass a full 360° rollover without fuel leakage.

Both front wheel drive and all wheel drive fuel delivery systems contain a fuel tank pressure relief/rollover valve. The valve is mounted on the top of the fuel tank on front wheel drive vehicles and on top of the fuel pump module on all wheel drive vehicles. The valve functions as a pressure relief valve while the vehicle is upright, but contains a check valve that prevents fuel from escaping from the fuel tank when the vehicle is turned over.

The fuel filler cap also acts as a pressure/vacuum valve. When air pressure inside the fuel tank gets too high or too low, the fuel filler cap opens to relieve the difference in pressure.

An evaporation control system restricts fuel evaporation into the atmosphere and reduces unburned hydrocarbons. Vapors from the fuel tank are collected in a charcoal filled canister. The vapors are held in the canister until the engine is operating. When the engine is running, the vapors are drawn through the intake manifold into the combustion chambers.

NO-LEAD FUEL TANK FILLER TUBE

All catalyst equipped vehicles have a special fuel tank filler tube. The fuel filler opening is smaller in diameter than those used for non-catalyst vehicles. Gasoline station pumps for leaded and unleaded fuel have different size nozzles. The unleaded pump nozzle is smaller than the leaded pump nozzle. The fuel tank filler neck opening contains a deflector that the smaller unleaded nozzle pushes back upon entering the filler neck. The deflector prevents the larger diameter leaded fuel nozzles from entering the filler neck. It also deflects fuel away from the filler neck if filling of the tank with leaded fuel is attempted.

The fuel filler tube on these models is equipped with a one way ball check valve. The valve prevents fuel splash back when filling the tank.

Drive	18
Fuel Tank—All Wheel Drive	16
Fuel Tank—Front Wheel Drive	14
General Information	13
No-Lead Fuel Tank Filler Tube	
Pressure-Vacuum Filler Cap—Front Wheel Drive	13

As a reminder, a label that reads UNLEADED FUEL ONLY is attached to the instrument panel under the fuel gauge. A similar label is located near the fuel tank filler.

PRESSURE-VACUUM FILLER CAP—FRONT WHEEL DRIVF

The loss of any fuel or vapor out of the filler neck is prevented by the use of a safety filler cap. The cap will release pressure only under significant pressure of 10.9 to 13.45 kPa (1.58 to 1.95 psi). The vacuum release for all gas caps is between .97 and 2.0 kPa (.14 and .29 psi). The cap must be replaced by a similar unit if replacement is necessary.

WARNING: REMOVE FILLER CAP TO RELIEVE TANK PRESSURE BEFORE REMOVING OR REPAIRING FUEL SYSTEM COMPONENTS.

FUEL TANK CAPACITIES

Front Wheel Drive	76 Liters	20 U.S. Gallons
All Wheel Drive	68 Liters	18 U.S. Gallons
Nominal refill capac	cities are shown. A v	variation may be

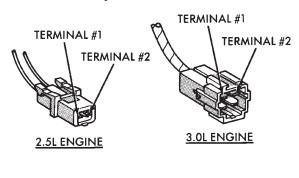
ar to car due to manutaci and refill procedure.

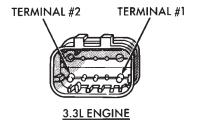
9114-135

FUEL SYSTEM PRESSURE RELEASE PROCEDURE

The 2.5L engine fuel system is under a constant pressure of approximately 270 kPa (39 psi). The fuel systems of 3.0L and 3.3L engines are under a constant pressure of approximately 330 kPa (48 psi). Fuel system pressure must be released before servicing any fuel system component.

(1) Remove fuel filler cap to release fuel tank pressure.


(2) Disconnect injector wiring harness from engine or main harness.


page

(3) Connect a jumper wire from terminal Number 1 (ground) of the injector harness (Fig. 1) to engine ground.

(4) Connect one end of a jumper wire to terminal Number 2 (positive) of the injector harness (Fig. 1). Connect the other end to the positive post of the battery for no longer than 5 seconds. This releases system pressure.

- (5) Remove jumper wires.
- (6) Continue fuel system service.

9114-147

FUEL TANK—FRONT WHEEL DRIVE

DRAINING FUEL TANK

(1) Remove fuel filler cap and perform Fuel System Pressure Release procedure.

- (2) Disconnect battery ground cable.
- (3) Raise vehicle on hoist.

(4) Remove rubber cap from drain tube. The tube is located on rear of fuel tank. Connect a portable holding tank to the drain tube (Fig. 2).

(5) Drain fuel tank dry into holding tank or a properly labeled **gasoline** safety container.

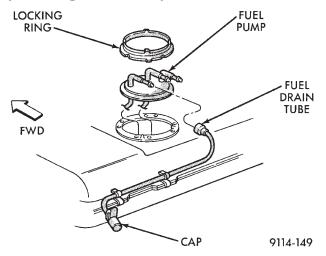
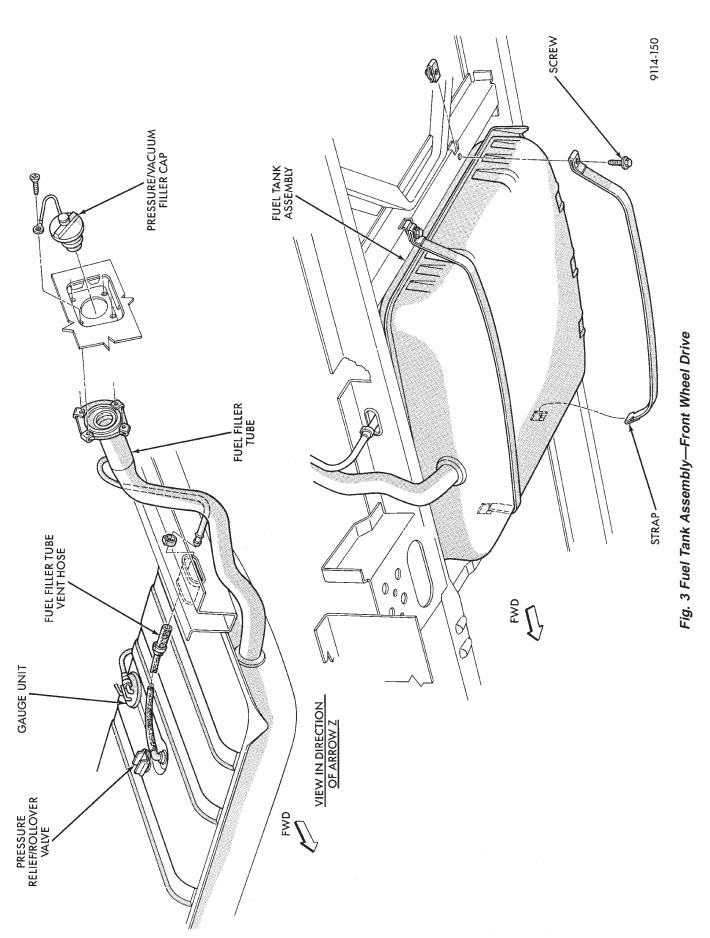


Fig. 2 Fuel Drain Tube—Front Wheel Drive

FUEL TANK REMOVAL—FRONT WHEEL DRIVE


(1) Raise vehicle on hoist.

(2) Drain fuel tank. Refer to Draining Fuel Tank.

(3) Remove fuel filler cap before disconnecting any lines.

(4) Remove screws that hold filler tube to inner and outer quarter panel (Fig. 3).

 \star

FUEL SYSTEM 14 - 15

(5) Raise vehicle. Disconnect fuel pump/level unit electrical connector.

(6) Disconnect fuel line quick connect fittings from the tank. Refer to Tube/Fitting Disassembly in the Fuel Delivery section of this Group.

(7) Use a transmission jack to support the fuel tank. Remove the bolts from the fuel tank straps.

(8) Lower tank slightly. Carefully remove filler tube from tank.

(9) Lower the fuel tank. Disconnect pressure relief/rollover valve hose. Remove clamp and remove fuel filler tube vent hose. Remove the fuel tank from the vehicle.

FUEL TANK INSTALLATION—FRONT WHEEL DRIVE

(1) Position fuel tank on transmission jack. Connect pressure relief/rollover valve hose. Connect fuel filler tube vent hose and replace clamp.

(2) Raise tank into position and carefully work filler tube into tank. A light coating of transmission fluid on the tube end may be used to aid assembly.

(3) Tighten strap bolts to 54.2 Nom (40 ft. lbs.) torque. Remove transmission jack.

CAUTION: Ensure straps are not twisted or bent before or after tightening strap nuts.

(4) Connect fuel pump/level unit electrical connector.

(5) Lubricate the metal tubes on the fuel pump with clean 30 weight engine oil. Install the quick connect fuel fittings. Refer to Tube/Fitting Assembly in the Fuel Delivery section of this Group.

(6) Attach filler tube to filler neck opening in quarter panel. Tighten quarter panel screws to $1.9 \text{ N} \cdot \text{m}$ (17 in. lbs.) torque. On affected models be sure to install the gasket between the filler tube and the inner quarter panel, before installing the mounting screws.

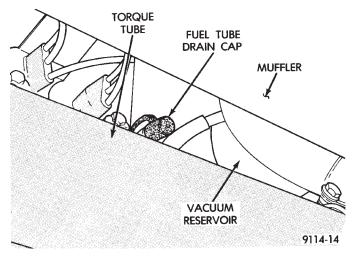
(7) Using a new clamp, install cap on fuel tank drain tube.

(8) Fill fuel tank, replace cap, and connect battery ground cable.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(9) Use the DRB II tester ASD Fuel System Test to pressurize the fuel system. Check for leaks.

FUEL TANK—ALL WHEEL DRIVE


DRAINING FUEL TANK-ALL WHEEL DRIVE

(1) Perform the Fuel System Pressure Release procedure.

- (2) Disconnect battery ground cable.
- (3) Raise vehicle on hoist.

(4) Remove rubber cap from fuel tank drain tube. The cap is located above the rear differential torque tube, on the inboard side of the fuel tank (Fig. 4). Connect a portable holding tank to the drain tube.

(5) Completely drain fuel tank into holding tank or a properly labeled **gasoline** safety container.

Fig. 4 Fuel Tank Drain Cap

FUEL TANK REMOVAL—ALL WHEEL DRIVE

(1) Perform the Fuel System Pressure Release Procedure. Refer to Fuel System Pressure Release in this section.

(2) Disconnect battery ground cable.

(4) Remove fuel filler cap.

(3) Drain fuel tank. Refer to Draining Fuel Tank—All Wheel Drive in this section.

(5) Remove screws that hold filler tube to opening in quarter panel.

(6) Raise vehicle on hoist.

(7) Remove fasteners holding the park brake cable support bracket assembly in place (Fig. 5).

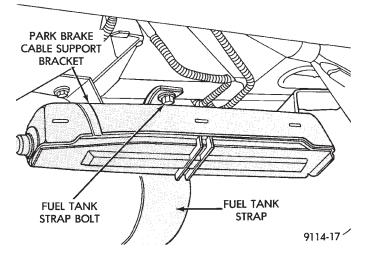


Fig. 5 Brake Cable Support Bracket—All Wheel Drive

Fig. 6 All Wheel Drive Fuel Tank

(9) Loosen fuel filler tube vent hose clamp and remove hose from tube.

(10) Lower tank slightly.

(11) Clean the quick connectors to remove any dirt. (Use air pressure or an appropriate cleaning agent). Disconnect fuel supply and return hoses from the chassis fuel tubes by pushing in on the black plastic release ring and pulling on the connector. Refer to Tube/Fitting disassembly in the Fuel Delivery Section of this group.

(12) Disconnect the fuel vent hose. Plug hoses to prevent contamination.

(13) Remove electrical connector from the fuel pump module (Fig. 7).

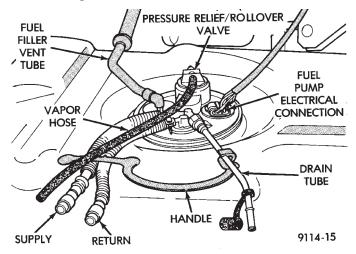


Fig. 7 Fuel Pump Module—All Wheel Drive

(14) Pull fuel filler vent hose through the frame rail.(15) Lower the fuel tank and remove the fuel filler tube from the fuel tank.

FUEL TANK INSTALLATION—ALL WHEEL DRIVE

(1) Position fuel tank on transmission jack. Insert fuel filler tube into opening in tank.

(2) Raise fuel tank while inserting fuel filler vent hose through hole in frame rail.

(3) Ensure that the black release rings of the supply and return fuel hose quick connect fittings are in the **OUT** position. The release ring should be loose and free floating.

(4) Lubricate the ends of the chassis fuel tubes (supply and return only) with clean 30 weight engine oil.

CAUTION: When making connections with quick connect fittings, always pull back on the fitting to ensure complete engagement. If the fitting will not fully connect, make sure the black release ring is not jammed into the metal casing of the fitting. If the fitting fails, replace it with a new one of the correct size.

(5) Couple quick connect fittings of the fuel supply and return hoses to the chassis fuel tubes. Refer to Tube/Fitting Assembly in the Fuel Delivery Section of this Group.

(6) Connect the fuel tank vent hose to the chassis fuel tube.

(7) Connect fuel pump electrical connector to the fuel pump module.

(8) Install drain tube cap.

(9) Raise fuel tank into position. Carefully twist the filler tube and fuel filler vent tube into position.

CAUTION: Be sure straps are not twisted or bent before or after tightening strap nuts.

(10) Install fuel tank support straps. Tighten fasteners to 54.2 Nom (40 ft.lbs.) torque. Remove the transmission jack.

(11) Connect fuel filler vent hose and tighten hose clamp.

(12) Install park brake cable support bracket. Tighten the fasteners to 22.6 N•m (200 in. lbs.) torque.

(13) Lower vehicle.

(14) Attach filler tube to filler neck opening in quarter panel. Tighten quarter panel screws to $1.9 \text{ N} \bullet \text{m}$ (17 inch-pounds) torque. On affected models, install gasket between the filler tube and the inner quarter panel before installing the mounting screws.

(8) Use a transmission jack to support the fuel tank. Remove the bolts from the fuel tank straps (Fig. 6).

(15) Fill fuel tank, replace cap, connect battery ground cable and check system operation.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(16) Pressurize the system using the DRB II. With ignition key in the **Run** position, use ASD Fuel System Test. This will activate the fuel pump and pressurize the system. Check system for leaks.

FUEL PUMP/LEVEL UNIT—FRONT WHEEL DRIVE

Refer to the Fuel Delivery Section in this Group for fuel pump/level unit service.

FUEL PUMP MODULE—ALL WHEEL DRIVE

Refer to the Fuel Delivery Section in this Group for fuel pump module service.

FUEL TANK PRESSURE RELIEF/ROLLOVER VALVE—FRONT WHEEL DRIVE

REMOVAL

(1) Remove fuel tank. Refer to fuel tank removal.

(2) Wedge the blade of a screwdriver between the rubber grommet and the fuel tank where the support rib is located. **Do not wedge between the valve and the grommet, this could damage the valve during removal.**

(3) Use a second screwdriver as a support to pry the valve and grommet assembly from the tank (Fig. 8).

(4) Place the valve upright on a flat surface to remove the grommet. Push down on the grommet and peel it off the valve.

INSTALLATION

(1) Position the rubber grommet in the fuel tank by rolling it around the curled lip of the tank.

Only use power steering fluid to lubricate the grommet.

(2) Lubricate the grommet with power steering fluid.(3) Push the valve downward into the grommet.

Twist valve until properly positioned (Fig. 9).

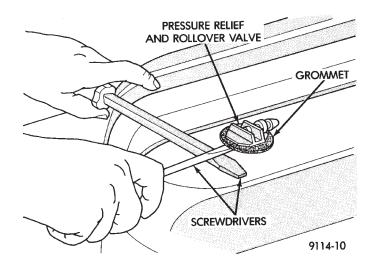
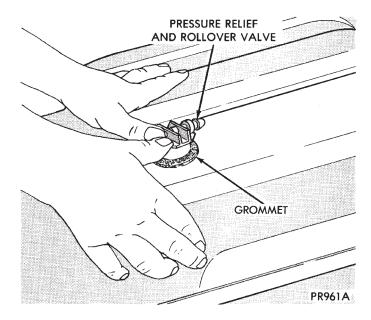



Fig. 8 Removing Pressure Relief/Rollover Valve—Front Wheel Drive.

Fig. 9 Installing Pressure Relief/Rollover Valve

(4) Install fuel tank. Refer to fuel tank installation in this section.

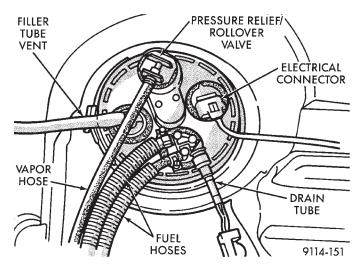
FUEL TANK PRESSURE RELIEF/ROLLOVER VALVE—ALL WHEEL DRIVE

REMOVAL

(1) Remove fuel tank. Refer to Fuel Tank Removal in this section.

(2) Wedge the blade of a screwdriver between the rubber grommet and the fuel pump module.

(3) Pry the valve and grommet assembly from the pump (Fig. 10).


(4) Place the valve upright on a flat surface to remove the grommet. Push down on the grommet and peel it off the valve.

INSTALLATION

(1) Install the rubber grommet in the fuel pump module.

Only use power steering fluid to lubricate the grommet.

(2) Lubricate the grommet with power steering fluid.(3) Push the valve downward into the grommet. Twist valve until properly positioned.

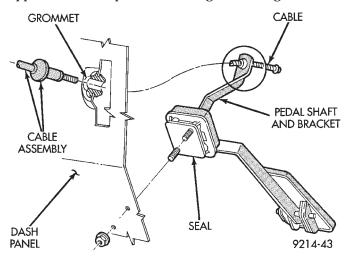
Fig. 10 Removing Pressure Relief/Rollover Valve

(3) Install fuel tank. Refer to Fuel Tank Installation in this section.

ACCELERATOR PEDAL AND THROTTLE CABLE

INDEX

page


ACCELERATOR PEDAL SERVICE

CAUTION: When servicing the accelerator pedal, throttle cable or speed control cable, do not damage or kink the core wire inside the cable sheathing.

REMOVAL

(1) Working from the engine compartment, hold the throttle body throttle lever in the wide open position. Remove the throttle cable from the throttle body cam.

(2) From inside the vehicle, hold up the pedal and remove the cable retainer and throttle cable from the upper end of the pedal shaft (Fig. 1 and Fig. 2).

Fig. 1 Accelerator Pedal and Throttle Cable—Front View

(3) Working from the engine compartment, remove nuts from accelerator pedal assembly studs (Fig. 1). Remove assembly from vehicle.

INSTALLATION

(1) Position accelerator pedal assembly on dash panel. Install retaining nuts. Tighten retaining nuts to 11.8 Nom (105 in. lbs.) torque.

(2) From inside the vehicle, hold up the pedal and install the throttle cable and cable retainer in the upper end of the pedal shaft.

(3) From the engine compartment, hold the throttle body lever in the wide open position and install the throttle cable.

RETAINER CLIP CLIP CABLE ASSEMBLY CABLE RETAINER

Fig. 2 Accelerator Pedal and Throttle Cable—Rear View

PANEL

THROTTLE CABLE SERVICE

Throttle Cable Service

CAUTION: When servicing the accelerator pedal, throttle cable or speed control cable, do not damage or kink the core wire inside the cable sheathing.

REMOVAL

GROMMET

(1) Working from the engine compartment, hold the throttle body throttle lever in the wide open position. remove the throttle cable from the throttle body cam (Figs. 3, 4, and 5).

(2) From inside the vehicle, hold up the pedal and remove the cable retainer and throttle cable from the upper end of the pedal shaft (Fig. 1).

(3) Remove retainer clip from throttle cable and grommet at dash panel (Fig. 2).

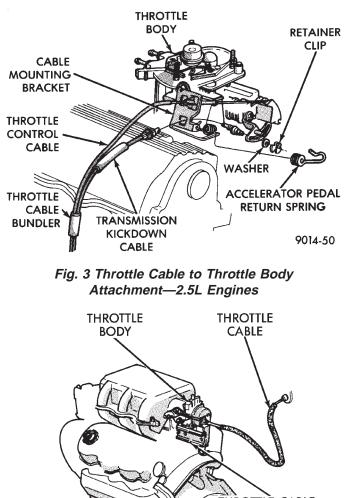
(4) From the engine compartment, pull the throttle cable out of the dash panel grommet. The grommet should remain in the dash panel.

(5) Remove the throttle cable from throttle bracket by carefully compressing both retaining ears simultaneously. Then gently pull the throttle cable from throttle bracket.

INSTALLATION

(1) From the engine compartment, push the housing end fitting into the dash panel grommet.

(2) Install the cable housing (throttle body end) into the cable mounting bracket on the engine.


page

9214-50

.

20

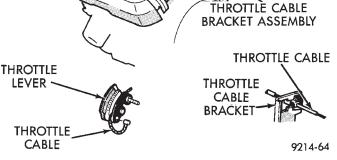


Fig. 4 Throttle Cable Attachment to Throttle Body Attachment— 3.0L Engine

(3) From inside the vehicle, hold up the pedal and install throttle cable and cable retainer in the upper end of the pedal shaft.

(4) At the dash panel, install the cable retainer clip between the end of the throttle cable fitting and grommet (Fig. 2).

(5) From the engine compartment, rotate the throttle lever wide open and install the throttle cable.

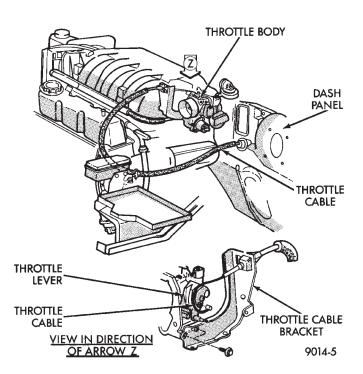


Fig. 5 Throttle Cable Attachment to Throttle Body Attachment—3.3L Engine

2.5L SINGLE POINT FUEL INJECTION—SYSTEM OPERATION

INDEX

page

Air Conditioning (A/C) Clutch Relay—Engine	
Controller Output	26
Air Conditioning Switch Sense—Engine Controller	
Input	24
Alternator Field—Engine Controller Output	27
Auto Shutdown (ASD) Relay and Fuel Pump	27
Relay—Engine Controller Output Automatic Idle Speed (AIS) Motor—Engine	21
Controller Output	27
Battery Voltage—Engine Controller Input	
Brake Switch—Engine Controller Input	
Canister Purge Solenoid—Engine Controller	
Output	28
Ccd Bus	
Check Engine Lamp—Engine Controller Output	28
Coolant Temperature Sensor—Engine Controller	~ 4
Input	24
Distributor (Hall Effect) Pick-Up—Engine Controller	20
	24
Emission Maintenance Reminder (EMR) Lamp—	27
	28
Engine Controller	22
Engine Controller Reprogramming (Flash)	24

GENERAL INFORMATION

The Electronic Fuel Injection System (Fig. 1) is a computer regulated single point fuel injection system that provides precise air/fuel ratio for all driving conditions. The fuel injection system is controlled by the Single Board Engine Controller II (SBEC II), **referred to in this manual as the engine controller**.

The engine controller is a pre-programmed digital computer.

The engine controller regulates ignition timing, airfuel ratio, emission control devices, cooling fan, charging system, speed control, and idle speed. The engine controller can adapt its requirement to meet changing operating conditions.

Various sensors provide the inputs necessary for the engine controller to correctly regulate fuel flow at the fuel injector. These include the manifold absolute pressure, throttle position, oxygen sensor, coolant temperature, and vehicle distance sensors. In addition to the sensors, various switches and relays provide important information and system control. These include the park/neutral switch, air conditioning clutch switch, auto shutdown relay and fuel pump relay.

All inputs to the engine controller are converted into signals. Based on these inputs the engine controller adjusts air-fuel ratio, ignition timing and other controlled outputs. The engine controller adjusts the air-

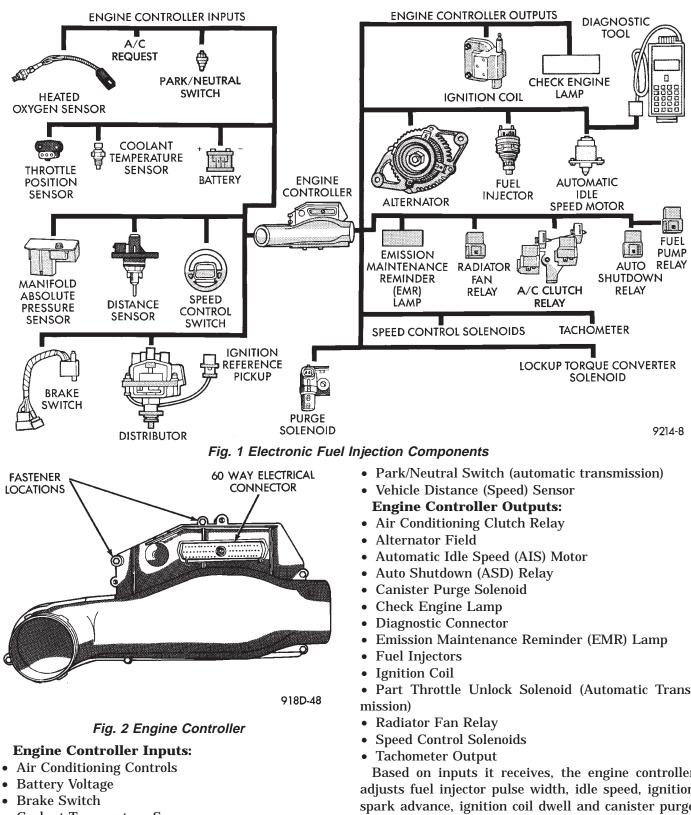
Fuel Injector—Engine Controller Output Fuel Pressure Regulator General Information Ignition Coil—Engine Controller Output Manifold Absolute Descents Controller Output	
Manifold Absolute Pressure (MAP) Sensor—Engine Controller Input	25 30
Oxygen Sensor (O ₂ Sensor)—Engine Controller InputPart Throttle Unlock Solenoid—Engine Controller	25
Output	29 29
Output	
Tachometer—Engine Controller Output	
Throttle Position Sensor (TPS)—Engine Controller Input Transmission Park/Neutral Switch—Engine	26
Controller Input	
Controller Input	26

fuel ratio by changing the injector pulse width. Injector pulse width is the period of time the injector is energized.

SYSTEM DIAGNOSIS

The engine controller tests many of its own input and output circuits. If a fault is found in a system, this information is stored in memory. Fault codes can displayed using the Check Engine lamp. Also, the technician can obtain the fault description by connecting the DRB II to the vehicle. For fault code information, refer to On Board Diagnostics in the General Diagnosis—Single Point Fuel Injection section of this group.

CCD BUS


Various controllers and modules exchange information through a communications port called the CCD Bus. The engine controller transmits the check engine lamp On/Off signal, engine RPM and vehicle load data on the CCD Bus.

ENGINE CONTROLLER

The engine controller is a digital computer containing a microprocessor (Fig. 2). The controller receives input signals from various switches and sensors that are referred to as Engine Controller Inputs. Based on these inputs, the controller adjusts various engine and vehicle operations through devices that are referred to as Engine Controller Outputs.

*

page

- **Coolant Temperature Sensor** •
- Distributor (Hall Effect) Pick-up •
- Manifold Absolute Pressure (MAP) Sensor •
- **Oxygen Sensor** •
- **SCI Receive**
- Speed Control System Controls
- **Throttle Position Sensor**

Part Throttle Unlock Solenoid (Automatic Trans-

Based on inputs it receives, the engine controller adjusts fuel injector pulse width, idle speed, ignition spark advance, ignition coil dwell and canister purge operation. The engine controller regulates operation of the EGR, cooling fan, A/C and speed control systems. The controller changes alternator charge rate by adjusting the alternator field.

The engine controller adjusts injector pulse width (air-fuel ratio) based on the following inputs.

battery voltage

- coolant temperature
- exhaust gas content
- engine speed (distributor pick-up)
- manifold absolute pressure
- throttle position

The engine controller adjusts ignition timing based on the following inputs.

- coolant temperature
- engine speed (distributor pick-up)
- manifold absolute pressure
- throttle position

The Automatic Shut Down (ASD) and Fuel Pump relays are mounted externally, but turned on and off by the engine controller through the same circuit.

The distributor pick-up signal is sent to the engine controller. If the engine controller does not receive a distributor signal within approximately one second of engine cranking, the ASD relay and fuel pump relay are deactivated. When these relays are deactivated, power is shut off from the fuel injector, fuel pump, ignition coil, and oxygen sensor heater element.

The engine controller contains a voltage converter that changes battery voltage to a regulated 9.0 volts to power the distributor pick-up and vehicle speed sensor. The controller also provides a 5.0 volts supply for the manifold absolute pressure sensor and throttle position sensor.

AIR CONDITIONING SWITCH SENSE—ENGINE CONTROLLER INPUT

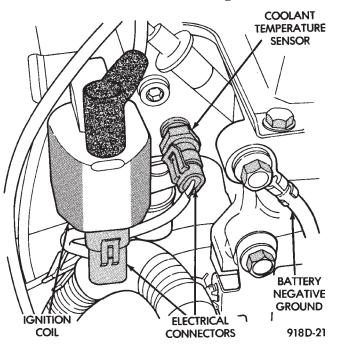
When the air conditioning or defrost switch is put in the ON position and the low pressure, A/C cycling, and high pressure switches are closed, the engine controller receives an input for air conditioning. After receiving this input, the engine controller activates the A/C compressor clutch by grounding the A/C clutch relay. The engine controller also adjusts idle speed to a scheduled RPM to compensate for increased engine load.

BATTERY VOLTAGE—ENGINE CONTROLLER INPUT

The engine controller monitors the battery voltage input to determine fuel injector pulse width and alternator field control.

If battery voltage is low the engine controller will increase injector pulse width (period of time that the injector is energized).

BRAKE SWITCH—ENGINE CONTROLLER INPUT


When the brake switch is activated, the engine controller receives an input indicating that the brakes are being applied. After receiving the input, the controller vents the speed control servo. Venting the servo turns the speed control system off.

COOLANT TEMPERATURE SENSOR—ENGINE CON-TROLLER INPUT

The coolant temperature sensor is installed behind the thermostat housing and ignition coil in the hot box. The sensor provides an input voltage to the engine controller (Fig. 3). As coolant temperature varies, the sensor resistance changes, resulting in a different input voltage to the engine controller.

When the engine is cold, the engine controller will demand slightly richer air-fuel mixtures and higher idle speeds until normal operating temperatures are reached.

This sensor is also used for cooling fan control.

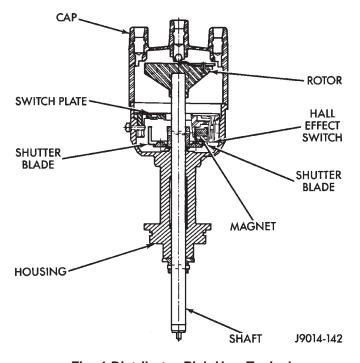


Fig. 3 Coolant Temperature Sensor

DISTRIBUTOR (HALL EFFECT) PICK-UP—ENGINE CONTROLLER INPUT

The engine speed is supplied to the engine controller by the distributor pick-up. The distributor pick-up is a Hall Effect device (Fig. 4).

A shutter (sometimes referred to as an interrupter) is attached to the distributor shaft. The shutter contains four blades, one per engine cylinder. A switch plate is mounted to the distributor housing above the shutter. The switch plate contains the distributor pick-up (a Hall Effect device and magnet) through which the shutter blades rotate. As the shutter blades pass through the pick-up, they interrupt the magnetic field. The Hall effect device in the pick-up senses the change in the magnetic field and switches on and off, creating pulses. The pulses are the input signal to the engine controller. The engine controller calculates engine speed through the number of pulses generated.

Fig. 4 Distributor Pick-Up—Typical MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR—ENGINE CONTROLLER INPUT

The engine controller supplies 5 volts to the MAP sensor. The MAP sensor converts intake manifold pressure into voltage. The engine controller monitors the MAP sensor output voltage. As vacuum increases, MAP sensor voltage decreases proportionately. Also, as vacuum decreases, MAP sensor voltage increases proportionately.

During cranking, before the engine starts running, the engine controller determines atmospheric air pressure from the MAP sensor voltage. While the engine operates, the controller determines intake manifold pressure from the MAP sensor voltage.

Based on MAP sensor voltage and inputs from other sensors, the engine controller adjusts spark advance and the air/fuel mixture.

The MAP sensor mounts on the dash panel (Fig. 5). A vacuum hose connects the sensor to the throttle body.

OXYGEN SENSOR (O₂ SENSOR)—ENGINE CON-TROLLER INPUT

The O_2 sensor is located in the exhaust manifold and provides an input voltage to the engine controller. The input tells the engine controller the oxygen content of the exhaust gas (Fig. 6). The engine controller uses this information to fine tune the air-fuel ratio by adjusting injector pulse width.

The O_2 sensor produces voltages from 0 to 1 volt, depending upon the oxygen content of the exhaust gas in the exhaust manifold. When a large amount of oxygen is present (caused by a lean air-fuel mixture), the sensor produces a low voltage. When there is a lesser amount present (rich air-fuel mixture) it pro-

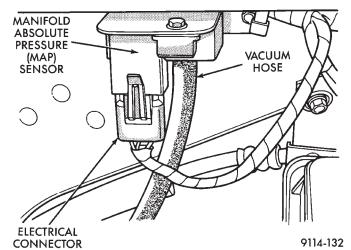
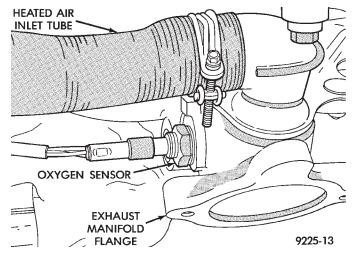



Fig. 5 Manifold Absolute Pressure (MAP) Sensor Location

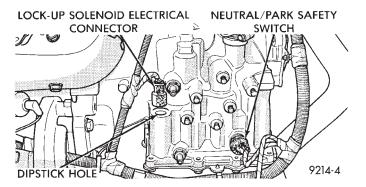
duces a higher voltage. By monitoring the oxygen content and converting it to electrical voltage, the sensor acts as a rich-lean switch.

The oxygen sensor is equipped with a heating element that keeps the sensor at proper operating temperature during all operating modes. Maintaining correct sensor temperature at all times allows the system to enter into closed loop operation sooner. Also, it allows the system to remain in closed loop operation during periods of extended idle.

In "Closed Loop" operation the engine controller monitors the O_2 sensor input (along with other inputs) and adjusts the injector pulse width accordingly. During "Open Loop" operation the engine controller ignores the O_2 sensor input. The controller adjusts injector pulse width based on preprogrammed (fixed) oxygen sensor input value (along with other sensor inputs).

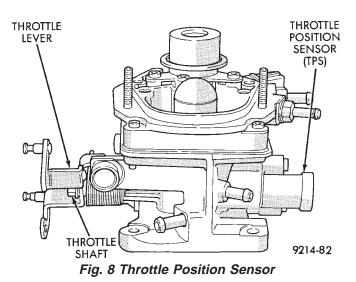
SPEED CONTROL—ENGINE CONTROLLER INPUT

The speed control system provides four separate voltages (inputs) to the engine controller. The voltages correspond to the On/Off, Set, and Resume.


The speed control On voltage informs the engine controller that the speed control system has been activated. The speed control Set voltage informs the controller that a fixed vehicle speed has been selected. The speed control Resume voltage indicates the previous fixed speed is requested. The speed control Off voltage tells the controller that the speed control system has deactivated. Refer to Group 8H for further speed control information.

TRANSMISSION PARK/NEUTRAL SWITCH—ENGINE CONTROLLER INPUT

The park/neutral switch is located on automatic transmission housing (Fig. 7). Manual transmission do not use park neutral switches. The switch provides an input to the engine controller that indicates whether the automatic transmission is in Park, Neutral, or a drive gear selection. This input is used to determine idle speed (varying with gear selection), fuel injector pulse width, and ignition timing advance. The park neutral switch is sometimes referred to as the neutral safety switch.


THROTTLE POSITION SENSOR (TPS)—ENGINE CONTROLLER INPUT

The Throttle Position Sensor (TPS) is mounted on the throttle body and connected to the throttle blade shaft (Fig. 8). The TPS is a variable resistor that provides the engine controller with an input signal (voltage) that represents throttle blade position. As the position of the throttle blade changes, the resistance of the TPS changes.

Fig. 7 Park Neutral Switch

The engine controller supplies approximately 5 volts to the TPS. The TPS output voltage (input signal to the engine controller) represents the throttle blade position. The TPS output voltage to the controller varies from approximately 0.5 volt at minimum throttle opening (idle) to 4 volts at wide open throttle. Along with inputs from other sensors, the engine controller uses

the TPS input to determine current engine operating conditions and adjust fuel injector pulse width and ignition timing.

VEHICLE DISTANCE (SPEED) SENSOR—ENGINE CONTROLLER INPUT

The distance sensor (Fig. 9) is located in the transmission extension housing. The sensor input is used by the engine controller to determine vehicle speed and distance traveled.

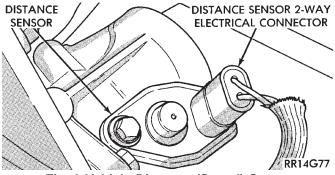


Fig. 9 Vehicle Distance (Speed) Sensor

The distance sensor generates 8 pulses per sensor revolution. These signals are interpreted along with a closed throttle signal from the throttle position sensor by the engine controller. The inputs are used to determine if a closed throttle deceleration or a normal idle (vehicle stopped) condition exists. Under deceleration conditions, the engine controller adjusts the AIS motor to maintain a desired MAP value. Under idle conditions, the engine controller adjusts the AIS motor to maintain a desired engine speed.

AIR CONDITIONING (A/C) CLUTCH RELAY—ENGINE CONTROLLER OUTPUT

The engine controller operates the air conditioning clutch relay ground circuit (Fig. 10). The air conditioning (A/C) fan relay supplies battery power to the solenoid side of the relay. The air conditioning clutch relay will not energize unless the A/C fan relay en-

ergizes. The A/C fan relay energizes when the air conditioning or defrost switch is put in the ON position and the low pressure, A/C cycling, and high pressure switches close.

With the engine operating, the engine controller cycles the air conditioning clutch on and off when the A/C switch closes with the blower motor switch in the on position. When the engine controller senses low idle speeds or wide open throttle through the throttle position sensor, it de-energizes the A/C clutch relay. The relay contacts open, preventing air conditioning clutch engagement.

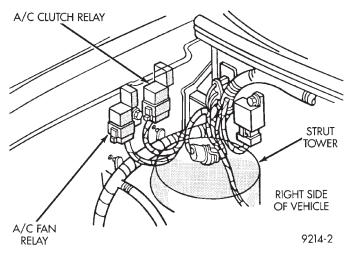


Fig. 10 Relay Identification

ALTERNATOR FIELD—ENGINE CONTROLLER OUT-PUT

The engine controller regulates the charging system voltage within a range of 12.9 to 15.0 volts. Refer to Group 8A for charging system information.

AUTO SHUTDOWN (ASD) RELAY AND FUEL PUMP RELAY—ENGINE CONTROLLER OUTPUT

The engine controller operates the auto shutdown (ASD) relay and fuel pump relay through one ground path. The controller operates the relays by switching the ground path on and off. Both relays turn on and off at the same time.

The ASD relay connects battery voltage to the fuel injector and ignition coil. The fuel pump relay connects battery voltage to the fuel pump and oxygen sensor heating element.

The engine controller turns the ground path off when the ignition switch is in the Off position. Both relays are off. When the ignition switch is in the On or Crank position, the engine controller monitors the distributor pick-up signal to determine engine speed and ignition timing (coil dwell). If the engine controller does not receive a distributor signal when the ignition switch is in the Run position, it will de-energize both relays. When the relays are de-energized, battery voltage is not supplied to the fuel injector, ignition coil, fuel pump and oxygen sensor heating element. The ASD relay and fuel pump relay are mounted on the drivers side fender well, near to the engine controller (Fig. 11).



Fig. 11 Auto Shutdown Relay

AUTOMATIC IDLE SPEED (AIS) MOTOR—ENGINE CONTROLLER OUTPUT

The idle speed stepper motor is mounted on the throttle body and is controlled by the engine controller (Fig. 12). The engine controller adjusts engine idle speed through the AIS to compensate for engine load or ambient conditions.

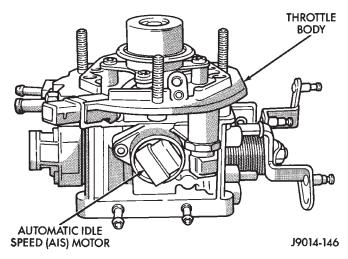


Fig. 12 Automatic Idle Speed Motor

The throttle body has an air bypass passage that provides air for the engine at idle (the throttle blade is closed). The AIS motor pintle protrudes into the air bypass passage and regulates air flow through it.

The engine controller adjusts engine idle speed by moving the AIS motor pintle in and out of the bypass passage. The adjustments are based on inputs the controller receives. The inputs are from the throttle position sensor, speed sensor (distributor pick-up coil), coolant temperature sensor, and various switch operations (brake, park/neutral, air conditioning). Deceleration die out is also prevented by increasing airflow when the throttle is closed quickly after a driving (speed) condition.

CANISTER PURGE SOLENOID—ENGINE CONTROLLER OUTPUT

Vacuum for the Evaporative Canister is controlled by the Canister Purge Solenoid (Fig. 13). The solenoid is controlled by the engine controller.

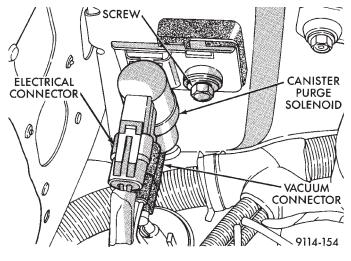


Fig. 13 Canister Purge Solenoid

The engine controller operates the solenoid by switching the ground circuit on and off based on engine operating conditions. When energized, the solenoid prevents vacuum from reaching the evaporative canister. When not energized the solenoid allows vacuum to flow to the canister.

During warm-up and for a specified time period after hot starts the engine controller grounds the purge solenoid causing it to energize. Vacuum does not operate the evaporative canister valve.

The engine controller removes the ground to the solenoid when the engine reaches a specified temperature and the time delay interval has occurred. When the solenoid is de-energized, vacuum flows to the canister purge valve. Vapors are purged from the canister and flow to the throttle body.

The purge solenoid is also energized during certain idle conditions to update the fuel delivery calibration.

CHECK ENGINE LAMP—ENGINE CONTROLLER OUTPUT

The engine controller supplies a check engine lamp on/off signal to the instrument panel through the CCD Bus. The CCD Bus is a communications port. Various modules use the CCD Bus to exchange information.

The Check Engine Lamp comes on each time the ignition key is turned ON and stays on for 3 seconds as a bulb test. The Check Engine Lamp warns the operator that the engine controller has entered a Limp-in mode. During Limp-in-Mode, the controller attempts to keep the system operational. The check engine lamp signals the need for immediate service. In limp-in mode, the Engine controller compensates for the failure of certain components that send incorrect signals. The controller substitutes for the incorrect signals with inputs from other sensors.

Signals that can trigger the Check Engine Lamp.

- Coolant Temperature Sensor
- Manifold Absolute Pressure Sensor
- Throttle Position Sensor
- Battery Voltage Input
- An Emissions Related System
- Charging system

The Check Engine Lamp can also be used to display fault codes. Cycle the ignition switch on, off, on, off, on, within five seconds and any fault codes stored in the Engine controller will be displayed. Refer to On Board Diagnostics in the General Diagnosis—2.5L TBI Engines section of this Group for Fault Code Descriptions.

DIAGNOSTIC CONNECTOR—ENGINE CONTROLLER OUTPUT

The diagnostic connector provides the technician with the means to connect the DRB II tester to diagnosis the vehicle.

EMISSION MAINTENANCE REMINDER (EMR) LAMP—ENGINE CONTROLLER OUTPUT

The Emissions Maintenance Reminder System (EMR) is incorporated into the engine controller. The engine controller records the vehicle mileage and stores it into memory every 8 miles. At that time, the engine controller checks for the 60,000, 82,500, and 120,000 mileage trip points. When the current mileage matches one of the above mentioned trip points, the EMR lamp on the instrument panel is activated.

Certain components must be replaced at the indicated mileage, or when the EMR lamp stays on with the key in the **on** position, whichever occurs first. After performing the required maintenance, the EMR lamp must be reset to turn the lamp off.

For more information, refer to Group 25 or the appropriate diagnostic manual.

FUEL INJECTOR—ENGINE CONTROLLER OUTPUT

The Fuel Injector is an electric solenoid driven by the engine controller (Fig 14).

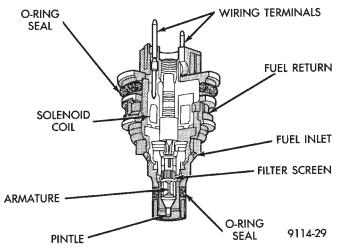


Fig. 14 Fuel Injector

Based on sensor inputs, the engine controller determines when and how long the fuel injector should operate.

The amount of time the injector operates is referred to as injector pulse width. The auto shutdown (ASD) relay supplies battery voltage to the injector. The engine controller supplies the ground path. By switching the ground path on and off, the engine controller adjusts injector pulse width. When the controller supplies a ground path, a spring loaded needle or armature lifts from its seat. Fuel flows through the orifice and deflects off the sharp edge of the injector nozzle. The resulting fuel sprays forms a 45° cone shaped pattern before entering the air stream in the throttle body.

Fuel is supplied to the injector constantly at regulated 270 Kpa (39 psi). Unused fuel returns to the fuel tank.

IGNITION COIL—ENGINE CONTROLLER OUTPUT

The engine controller provides a ground contact (circuit) for energizing the ignition coil. When the controller breaks the contact, the energy in the coil primary transfers to the secondary causing the spark. The auto shutdown (ASD) relay provides battery voltage to the ignition coil positive terminal. The engine controller will de-energize the ASD relay if it does not receive an input from the distributor pick-up. Refer to Auto Shutdown (ASD) Relay/Fuel Pump Relay—Engine Controller Output in this section for relay operation.

The ignition coil is mounted on the hot box next to the thermostat housing (Fig. 15).



Fig. 15 Ignition Coil

PART THROTTLE UNLOCK SOLENOID—ENGINE CONTROLLER OUTPUT

Three-speed automatic transaxles use a part throttle unlock solenoid. The engine controller controls the lock-up of the torque convertor through the part throttle unlock solenoid. The transmission is locked up only in direct drive mode. Refer to Group 21 for transmission information.

RADIATOR FAN RELAY—ENGINE CONTROLLER OUTPUT

The radiator fan is energized by the engine controller through the radiator fan relay. The radiator fan relay is located on the drivers side fender well near to the engine controller (Fig. 11). The engine controller grounds the radiator fan relay when engine coolant reaches a predetermined temperature. For more information, refer to Group 7, Cooling Systems.

SPEED CONTROL SOLENOIDS—ENGINE CONTROL-LER OUTPUT

The speed control vacuum and vent solenoids are operated by the engine controller. When the engine controller supplies a ground to the vacuum solenoid, the speed control system opens the throttle plate. When the controller supplies a ground to the vent solenoid, the throttle blade closes. The engine controller balances the two solenoids to maintain the set speed. Refer to Group 8H for speed control information.

TACHOMETER—ENGINE CONTROLLER OUTPUT

The engine controller supplies engine RPM to the instrument panel tachometer through the CCD Bus.

The CCD Bus is a communications port. Various modules use the CCD Bus to exchange information. Refer to Group 8E for more information.

MODES OF OPERATION

As input signals to the engine controller change, the engine controller adjusts its response to the output devices. For example, the engine controller must calculate a different injector pulse width and ignition timing for idle than it does for wide open throttle (WOT). There are several different modes of operation that determine how the engine controller responds to the various input signals.

There are two different areas of operation, OPEN LOOP and CLOSED LOOP.

During OPEN LOOP modes, the engine controller receives input signals and responds according to preset engine controller programming. Input from the oxygen (O_2) sensor is not monitored during OPEN LOOP modes.

During CLOSED LOOP modes, the engine controller does monitor the oxygen (O_2) sensor input. This input indicates to the engine controller whether or not the calculated injector pulse width results in the ideal air-fuel ratio of 14.7 parts air to 1 part fuel. By monitoring the exhaust oxygen content through the O_2 sensor, the engine controller can fine tune the injector pulse width. Fine tuning injector pulse width allows the controller to achieve optimum fuel economy combined with low emissions.

The single point fuel injection system has the following modes of operation:

- Ignition switch ON Zero RPM
- Engine start-up
- Engine warm-up
- Cruise (Idle)
- Acceleration
- Deceleration
- Wide Open Throttle
- Ignition switch OFF

The engine start-up (crank), engine warm-up, and wide open throttle modes are OPEN LOOP modes. Under most operating conditions, the acceleration, deceleration, and cruise modes, with the engine at operating temperature, are CLOSED LOOP modes.

IGNITION SWITCH ON (ZERO RPM) MODE

When the single point fuel injection system is activated by the ignition switch, the following actions occur:

• The engine controller determines atmospheric air pressure from the MAP sensor input to determine basic fuel strategy.

• The engine controller monitors the coolant temperature sensor and throttle position sensor inputs. The engine controller modifies fuel strategy based on these inputs. When the key is in the ON position and the engine is not running or cranking (zero rpm), the auto shutdown (ASD) relay and fuel pump relay are not energized. Therefore battery voltage is not supplied to the fuel pump, ignition coil, fuel injector or oxygen sensor heating element.

ENGINE START-UP MODE

This is an OPEN LOOP mode. The following actions occur when the starter motor is engaged.

If the engine controller receives a distributor signal, it energizes the auto shutdown (ASD) relay and fuel pump relay. These relays supply battery voltage to the fuel pump, fuel injector, ignition coil and oxygen sensor heating element. If the engine controller does not receive a distributor input, the ASD and fuel pump relays will be de-energized after approximately one second.

When the engine is idling within ± 64 RPM of the target RPM, the controller compares current MAP value with the atmospheric pressure value received during the Ignition Switch On (Zero RPM) Mode. If a minimum difference between the two is not detected, a MAP sensor fault is set into memory.

Once the ASD relay and fuel pump relay have energized, the engine controller:

• Supplies a ground path to the injector. The injector is pulsed four times per engine revolution instead of the normal two pulses per revolution.

• Determines injector pulse width based on coolant temperature, MAP sensor input, throttle position, and the number of engine revolutions since cranking was initiated.

• Monitors the coolant temperature sensor, distributor pick-up, MAP sensor, and throttle position sensor to determine correct ignition timing.

ENGINE WARM-UP MODE

This is a OPEN LOOP mode. The following inputs are received by the engine controller:

- coolant temperature
- manifold absolute pressure (MAP)
- engine speed (distributor pick-up)
- throttle position
- A/C switch
- battery voltage

The engine controller provides a ground path for the injector to precisely control injector pulse width (by switching the ground on and off). The controller energizes the injector twice per engine revolution. The engine controller regulates engine idle speed (by adjusting the automatic idle speed motor) and ignition timing.

CRUISE OR IDLE MODE

When the engine is at operating temperature this is a CLOSED LOOP mode. During cruising speed and at idle the following inputs are received by the engine controller:

- coolant temperature
- manifold absolute pressure
- engine speed
- throttle position
- exhaust gas oxygen content
- A/C control positions
- battery voltage

The engine controller provides a ground path for the injector to precisely control injector pulse width. The controller energizes the injector twice per engine revolution. The engine controller controls engine idle speed and ignition timing. The engine controller controls the air/fuel ratio according to the oxygen content in the exhaust gas.

ACCELERATION MODE

This is a CLOSED LOOP mode. The engine controller recognizes an abrupt increase in throttle position or MAP pressure as a demand for increased engine output and vehicle acceleration. The engine controller increases injector pulse width in response to increased fuel demand.

DECELERATION MODE

This is a CLOSED LOOP mode. During deceleration the following inputs are received by the engine controller:

- coolant temperature
- manifold absolute pressure
- engine speed
- throttle position
- exhaust gas oxygen content
- A/C control positions
- battery voltage

The engine controller may receive a closed throttle input from the throttle position sensor (TPS) when it senses an abrupt decrease in manifold pressure. This indicates a hard deceleration. The engine controller may reduce injector firing to once per engine revolution. This helps maintain better control of the air-fuel mixture (as sensed through the O_2 sensor).

During a deceleration condition, the engine controller grounds the exhaust gas recirculation (EGR) and evaporative purge solenoids. When these solenoids are grounded, the EGR and canister purge functions stop.

WIDE OPEN THROTTLE MODE

This is an OPEN LOOP mode. During wide-openthrottle operation, the following inputs are received by the engine controller:

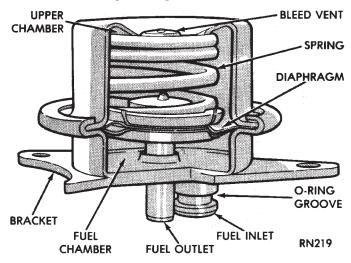
- coolant temperature
- manifold absolute pressure

- engine speed
- throttle position

When the engine controller senses a wide open throttle condition through the throttle position sensor (TPS) it will:

• De-energize the air conditioning relay. This disables the air conditioning system.

The exhaust gas oxygen content input is not accepted by the engine controller during wide open throttle operation. The engine controller will adjust injector pulse width to supply a predetermined amount of additional fuel.


IGNITION SWITCH OFF MODE

When the ignition switch is turned to the OFF position, the following occurs:

- All outputs are turned off.
- No inputs are monitored.
- The engine controller shuts down.

FUEL PRESSURE REGULATOR

The pressure regulator is a mechanical device located at the top of the throttle body (Fig. 16). Its function is to maintain a constant 270 kPa (39 PSI) across the fuel injector tip.

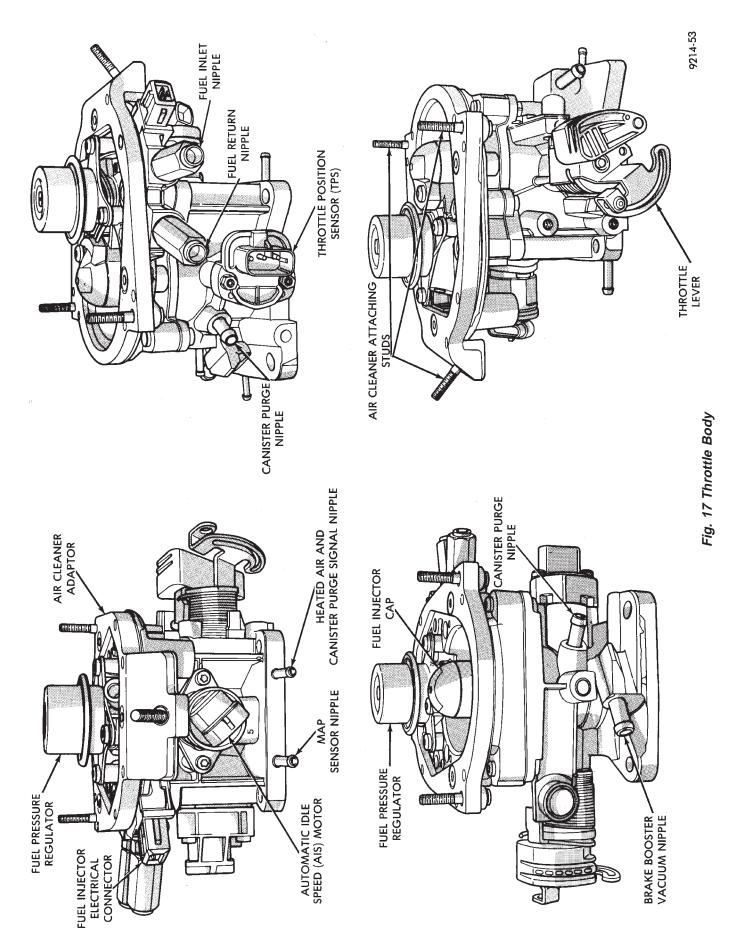


Fig. 16 Fuel Pressure Regulator

The regulator uses a spring loaded rubber diaphragm to uncover a fuel return port. When the fuel pump operates, fuel flows past the injector into the regulator. The blocked return port restricts fuel from flowing any further. When fuel pressure reaches 270 kPa (39 PSI) it pushes on the diaphragm, compressing the spring, and uncovers the fuel return port. The diaphragm and spring will constantly move from an open to closed position to keep the fuel pressure constant.

THROTTLE BODY

The throttle body assembly (Fig. 17) is mounted on top of the intake manifold. It contains the fuel injector, pressure regulator, throttle position sensor and automatic idle speed motor. Air flow through the throttle body is controlled by a cable operated throttle blade located in the base of the throttle body. The throttle body itself provides the chamber for metering, atomizing, and mixing fuel with the air entering the engine.

2.5L SINGLE POINT FUEL INJECTION—GENERAL DIAGNOSIS

INDEX

page

60-Way Engine Controller Wiring Connector	43
Circuit Actuation Test Mode	42
Fault Code Description	40
General Information	34
On Board Diagnostics	38

GENERAL INFORMATION

The fuel injection system is managed by the engine controller. The controller receives inputs from various switches and sensors (Fig. 1). Based on these inputs the engine controller adjusts ignition timing and idle speed through output devices. Refer to the Single Point Fuel Injection section of this group for system and component descriptions.

VISUAL INSPECTION

ø

THROTTLE

POSITION

SENSOR

MANIFOLD

ABSOLUTE

PRESSURE

SENSOR

BRAKE SWITCH

HEATED **OXYGEN SENSOR**

ALLE

A visual inspection for loose, disconnected, or misrouted wires and hoses should be made before attempting to diagnose or service the fuel injection system. A visual check helps save unnecessary test and diagnostic time. A thorough visual inspection will include the following checks:

(1) Check Ignition Coil Electrical Connections (Fig. 2).

Ę

A∕C

REQUEST

COOLANT TEMPERATURE

SENSOR

DISTANCE

SENSOR

DISTRIBUTOR

State Display Test Mode	40
Systems Test	40
Throttle Body Minimum Air Flow Check	
Procedure	43
Visual Inspection	-

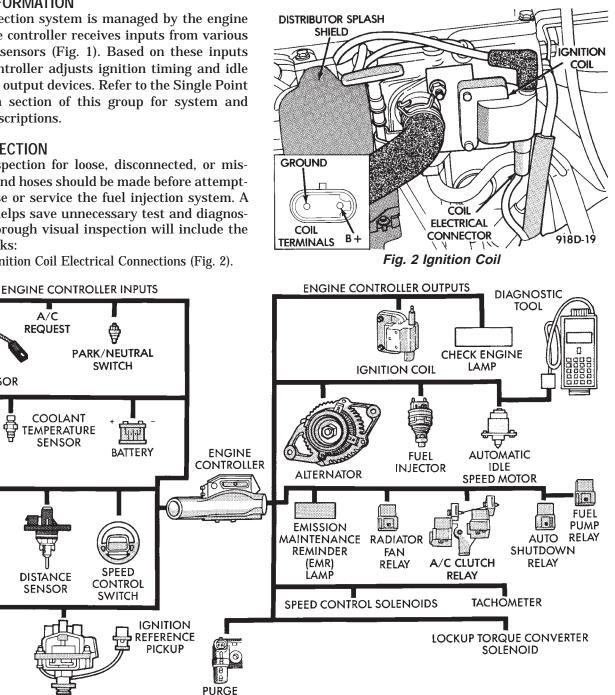


Fig. 1 Throttle Body Fuel Injection Components

SOLENOID

(2) Verify that the electrical connector is attached to the Canister Purge Solenoid (Fig. 3).

(3) Verify that vacuum connection at Canister Purge Solenoid is secure and not leaking.

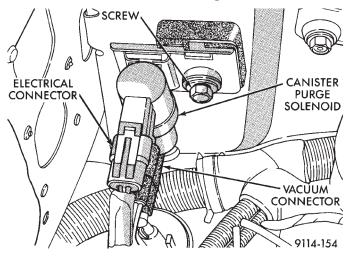
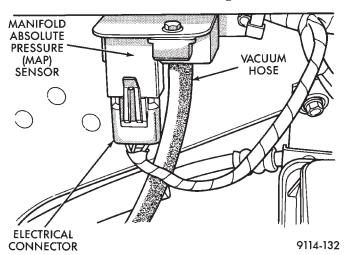



Fig. 3 Canister Purge Solenoid

(4) Verify the harness connector is attached to the MAP sensor (Fig. 4).

(5) Verify manifold absolute pressure sensor vacuum hose is attached at MAP sensor (Fig. 4).

Fig. 4 Manifold Absolute Pressure (MAP) Sensor Location

(6) Verify that alternator wiring and belt are correctly installed and tightened.

(7) Verify that hoses are securely attached to vapor canister (Fig. 5).

(8) Verify that the throttle body wiring harness is connected to main harness.

(9) Verify the harness connector is attached to AIS motor (Fig. 6).

(10) Verify the harness connector is attached to the throttle position sensor (Fig. 6).

(11) Verify the harness connector is attached to the fuel injector (Fig. 6).

Fig. 5 Vapor Canister

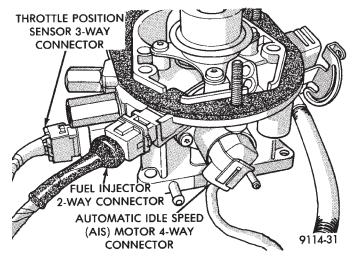


Fig. 6 Throttle Body Wiring Connections

(12) Verify the hose from PCV valve is securely attached to the intake manifold vacuum port (Fig. 7).

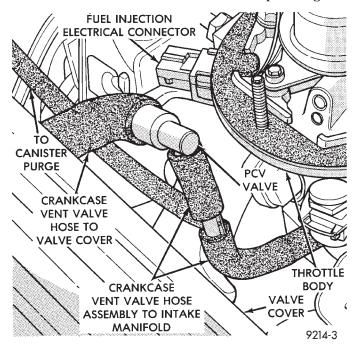


Fig. 7 Vacuum Hose from Intake Manifold to PCV Valve

(13) Verify the vacuum connections on the front and rear of throttle body are secure and not leaking (Figs. 8, and 9).

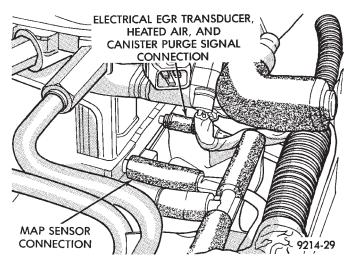
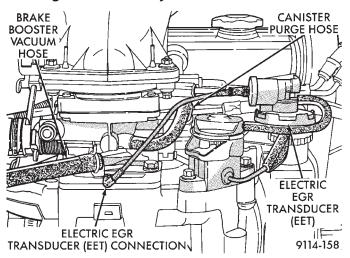



Fig. 8 Throttle Body Vacuum Ports—Front

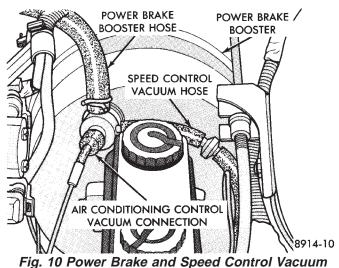
Fig. 9 Throttle Body Vacuum Ports—Rear

(14) Verify the heated air door vacuum connection is connected and not leaking.

(15) Verify power brake and speed control vacuum connectors are tight (Fig. 10).

(16) Verify all ignition cables are in correct order and seated into place (Fig. 11).

(17) Verify electrical connector is attached to coolant temperature sensor (Fig. 12).


(18) Verify battery negative ground eyelet is mounted to the cylinder head (left side) (Fig. 12).

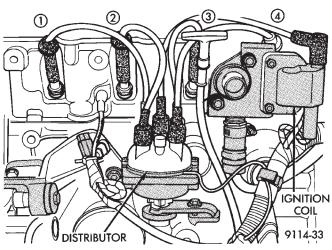
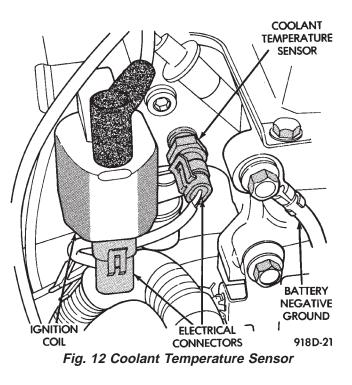
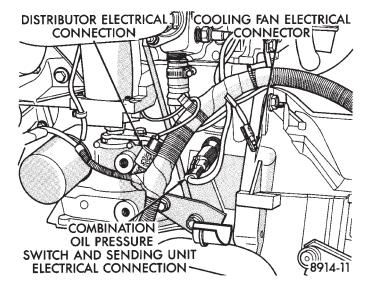
(19) Verify the harness connector is attached to distributor (Fig. 13).

(20) Verify radiator fan electrical connection is secure.

(21) Verify oil pressure switch electrical connections are secure (Fig. 13).

(22) On vehicles with an automatic transmission, ensure the neutral safety switch electrical connector is secure (Fig. 14).

Connection

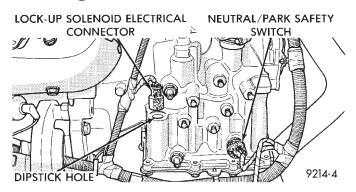

Fig. 11 Ignition Cable Routing and Connection

Fig. 13 Distributor, Oil Pressure Switch, and Radiator Fan Electrical Connections

G(23) On vehicles with an automatic transmission, check torque convertor lockup solenoid electrical connection (Fig. 14).

Fig. 14 Automatic Transmission Electrical Connections

(24) Check the 60-way electrical connection at the engine controller for damage or spread terminals. Verify that the 60-way connector is fully inserted into the socket on the Engine Controller (Fig. 15). Ensure that wires are not stretched or pulled out of the connector.

(25) Verify all electrical connectors are fully inserted into relays (Fig. 16 and Fig. 17).

(26) Ensure battery connections are clean and tight.

(27) Verify engine harness to main harness connections are fully inserted.

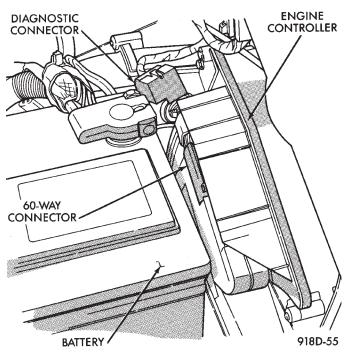


Fig. 15 Engine Controller Electrical Connector

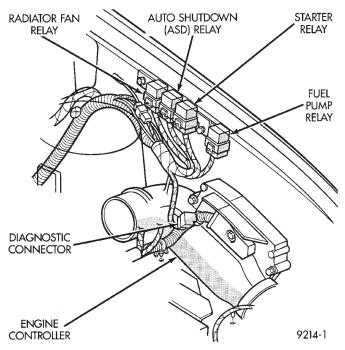


Fig. 16 ASD, Fuel Pump, Radiator Fan and Starter Relays

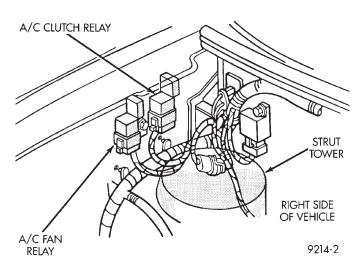


Fig. 17 A/C Clutch and A/C Fan Relays

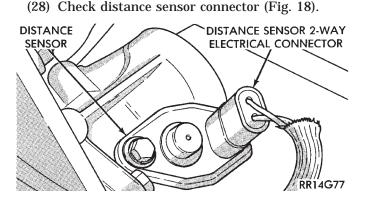


Fig. 18 Distance Sensor Wiring Connection

(29) Verify engine ground strap is attached at the engine and dash panel (Figs. 19 and 20).

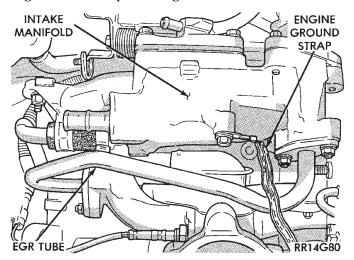


Fig. 19 Engine Ground Strap at Intake Manifold

(30) Verify the harness connector is attached to the heated oxygen sensor (Fig. 21).

(31) Check Hose and Wiring Connections at Fuel Pump. Check that wiring connector is making contact with terminals on pump.

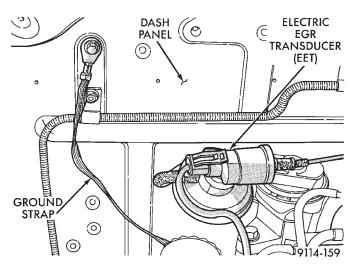


Fig. 20 Engine Ground Strap to Dash Panel

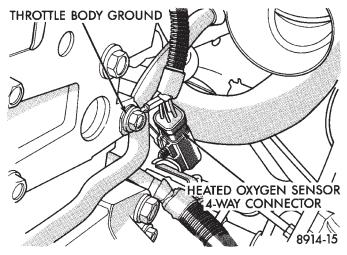
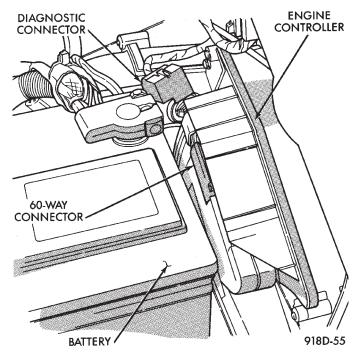


Fig. 21 Heated Oxygen Sensor Electrical Connection

ON BOARD DIAGNOSTICS

The engine controller has been programmed to monitor many different circuits of the fuel injection system. If a problem is sensed with a monitored circuit often enough to indicate an actual problem, the controller stores a fault. If the problem is repaired or ceases to exist, the engine controller cancels the Fault Code after 51 vehicle key on/off cycles.

Certain criteria must be met for a fault code to be entered into engine controller memory. The criteria may be a specific range of engine RPM, engine temperature, and/or input voltage to the engine controller.


It is possible that a fault code for a monitored circuit may not be entered into memory even though a malfunction has occurred. This may happen because one of the fault code criteria for the circuit has not been met. **For example**, assume that one of the fault code criteria for the MAP sensor circuit is that the engine must be operating between 750 and 2000 RPM to be monitored for a fault code. If the MAP sensor output circuit shorts to ground when engine

+

RPM is above 2400 RPM (resulting in a 0 volt input to the engine controller) a fault code will not be entered into memory. This is because the condition does not occur within the specified RPM range.

There are several operating conditions that the engine controller does not monitor and set fault codes for. Refer to Monitored Circuits and Non-Monitored Circuits in this section.

Stored fault codes can be displayed either by cycling the ignition key On - Off - On - Off - On, or through use of the Diagnostic Readout Box II (DRB II). The DRB II connects to the diagnostic connector in the vehicle (Fig. 22).

Fig. 22 Diagnostic Connector Location

MONITORED CIRCUITS

The engine controller can detect certain fault conditions in the fuel injection system.

Open or Shorted Circuit - The engine controller can determine if the sensor output (input to controller) is within proper range. Also, the controller can determine if the circuit is open or shorted.

Output Device Current Flow - The engine controller senses whether the output devices are hooked up. If there is a problem with the circuit, the controller senses whether the circuit is open, shorted to ground, or shorted high.

Oxygen Sensor - The engine controller can determine if the oxygen sensor is switching between rich and lean once the system has entered closed loop. Refer to Modes of Operation in this section for an explanation of closed loop operation.

NON-MONITORED CIRCUITS

The engine controller does not monitor the following circuits, systems and conditions that could have malfunctions that result in driveability problems. Fault codes may not be displayed for these conditions. However, problems with these systems may cause fault codes to be displayed for other systems. For example, a fuel pressure problem will not register a fault directly, but could cause a rich or lean condition. This could cause an oxygen sensor fault to be stored in the engine controller.

Fuel Pressure - Fuel pressure is controlled by the fuel pressure regulator. The engine controller cannot detect a clogged fuel pump inlet filter, clogged in-line fuel filter, or a pinched fuel supply or return line. However, these could result in a rich or lean condition causing an oxygen sensor fault to be stored in the engine controller.

Secondary Ignition Circuit - The engine controller cannot detect an inoperative ignition coil, fouled or worn spark plugs, ignition cross firing, or open spark plug cables.

Engine Timing - The engine controller cannot detect an incorrectly indexed timing chain, camshaft sprocket and crankshaft sprocket. The engine controller also cannot detect an incorrectly indexed distributor. However, these could result in a rich or lean condition causing an oxygen sensor fault to be stored in the engine controller.

Cylinder Compression - The engine controller cannot detect uneven, low, or high engine cylinder compression.

Exhaust System - The engine controller cannot detect a plugged, restricted or leaking exhaust system.

Fuel Injector Malfunctions - The engine controller cannot determine if the fuel injector is clogged, the pintle is sticking or the wrong injector is installed. However, these could result in a rich or lean condition causing an oxygen sensor fault to be stored in the engine controller.

Excessive Oil Consumption - Although the engine controller monitors exhaust stream oxygen content when the system is in closed loop, it cannot determine excessive oil consumption.

Throttle Body Air Flow - The engine controller cannot detect a clogged or restricted air cleaner inlet or filter element.

Evaporative System - The engine controller will not detect a restricted, plugged or loaded evaporative purge canister.

Vacuum Assist - Leaks or restrictions in the vacuum circuits of vacuum assisted engine control system devices are not monitored by the engine controller. However, these could result in a MAP sensor fault being stored in the engine controller.

Engine Controller System Ground - The engine controller cannot determine a poor system ground. However, a fault code may be generated as a result of this condition.

Engine Controller Connector Engagement - The engine controller cannot determine spread or damaged connector pins. However, a fault code may be generated as a result of this condition.

HIGH AND LOW LIMITS

The engine controller compares input signal voltages from each input device with established high and low limits that are programmed into it for that device. If the input voltage is not within specifications and other fault code criteria are met, a fault code will be stored in memory. (Other fault code criteria might include engine RPM limits or input voltages from other sensors or switches that must be present before a fault condition can be verified).

FAULT CODE DESCRIPTION

When a fault code appears, it indicates that the Engine Controller has recognized an abnormal condition in the system. Fault codes can be obtained from the Check Engine lamp on the Instrument Panel or from the Diagnostic Readout Box II (DRB II). Fault codes indicate the results of a failure but do not identify the failed component directly.

SYSTEMS TEST

Be sure to apply parking brake and/or block wheels before performing idle check or adjustment, or any engine running tests.

OBTAINING FAULT CODES

(1)]Connect DRBII to the diagnostic connector located in the engine compartment near the engine controller.

(2) Start the engine if possible, cycle the transmission selector and the A/C switch if applicable. Shut off the engine.

(3) Turn the ignition switch on, access Read Fault Screen. Record all the fault messages shown on the DRB II. Observe the check engine lamp on the instrument panel. The lamp should light for 3 seconds then go out (bulb check).

STATE DISPLAY TEST MODE

The switch inputs used by the engine controller have only two recognized states, HIGH and LOW. For this reason, the engine controller cannot recognize the difference between a selected switch position versus an open circuit, a short circuit, or a defective switch. If the change is displayed, it can be assumed that the entire switch circuit to the engine controller is functional. From the state display screen access either State Display Inputs and Outputs or State Display Sensors.

STATE DISPLAY INPUTS AND OUTPUTS

Connect the DRB II tester to the vehicle and access the State Display screen. Then access Inputs and Outputs. The

following is a list of the engine control system functions accessible through the Inputs and Outputs screen:

Park/Neutral Switch (automatic transmission only) **Speed Control Resume Brake Switch** Speed Control On/Off **Speed Control Set** A/C Switch Sense **Z2 Voltage Sense B1 Voltage Sense** S/C (Speed Control) Vent Solenoid S/C (Speed Control) Vacuum Solenoid **PTU Solenoid** A/C Clutch Relay **EMR** Lamp Auto Shutdown Relay **Radiator Fan Relay** Purge Solenoid **Check Engine Lamp**

STATE DISPLAY SENSORS

Connect the DRB II tester to the vehicle and access the State Display screen. Then access Sensor Display. The following is a list of the engine control system functions accessible through the Sensor Display screen:

Battery Temp Sensor Oxygen Sensor Signal Coolant Temperature Coolant Temp Sensor Throttle Position Minimum Throttle **Battery Voltage MAP Sensor Reading AIS Motor Position** Added Adaptive Fuel Adaptive Fuel Factor **Barometric Pressure** Min Airflow Idl Spd **Engine Speed** Fault #1 Key-On Info Module Spark Advance **Speed Control Target** Fault #2 Key-On Info Fault #3 Key-On Info **Speed Control Status** Speed Control Switch Voltage Charging System Goal Theft Alarm Status Map Sensor Voltage Vehicle Speed **Oxygen Sensor State MAP Gauge Reading Throttle Opening Total Spark Advance**

FAULT CODE DESCRIPTION

Fault Code	DRB II Display	Description
11	No reference Signal During Cranking	No distributor reference signal detected during engine cranking.
]3+**	No change in MAP from start to run	No difference recognized between the engine MAP reading and the barometric (atmospheric) pressure reading at start-up.
14+**	MAP voltage too low	MAP sensor input below minimum acceptable voltage.
	MAP voltage too High	MAP sensor input above maximum acceptable voltage.
15**	No vehicle speed signal	No vehicle distance (speed) sensor signal detected during road load conditions.
17	Engine is cold too long	Engine coolant temperature remains below normal operating temperatures during vehicle travel (thermostat).
21**	O ₂ signal stays at center	Neither rich or lean condition detected from the oxygen sensor input.
	or O ₂ signal shorted to voltage	Oxygen sensor input voltage maintained above the normal operating range.
22+**	Coolant sensor voltage too high	Coolant temperature sensor input above the maximum acceptable voltage.
	or Coolant sensor voltage too low	Coolant temperature sensor input below the minimum acceptable voltage.
24+**	Throttle position sensor voltage high	Throttle position sensor input above the maximum acceptable voltage.
•	or Throttle position sensor voltage low	Throttle position sensor input below the minimum acceptable voltage.
25**	Automatic idle speed motor circuits	A shorted condition detected in one or more of the AIS control circuits.
27	Injector control circuit (DRB II)	Injector output driver does not respond properly to the control signal (DRB II specifies the injector by cylinder number).
31**	Purge solenoid circuit	An open or shorted condition detected in the purge solenoid circuit.
33	A/C clutch relay circuit	An open or shorted condition detected in the A/C clutch relay circuit.
34	Speed control solenoid circuits	An open or shorted condition detected in the speed control vacuum or vent solenoid circuits.

+ Check Engine Lamp On ** Check Engine Lamp On (California Only)

14 - 42 FUEL SYSTEM -

Fault Code	DRB II Display	Description
35	Radiator fan relay circuits	An open or shorted condition detected in the radiator fan circuit
37	Torque convertor unlock solenoid CKT	An open or shorted condition detected in the torque convertor part throttle unlock solenoid circuit (automatic transmission).
41+**	Alternator field not switching properly	An open or shorted condition detected in the alternator field control circuit.
42	Auto shutdown relay control circuit	An open or shorted condition detected in the auto shutdown relay circuit.
44	Battery temp voltage	An open or shorted condition exists in the coolant temperature sensor circuit or a problem exists in the engine controller's battery temperature voltage circuit.
46+**	Charging system voltage too high	Battery voltage sense input above target charging voltage during engine operation.
47+**	Charging system voltage too low	Battery voltage sense input below target charging during engine operation. Also, no significant change detected in battery voltage during active test of alternator output.
51**	O ₂ signal stays below center (lean)	Oxygen sensor signal input indicates lean air/fuel ratio condition during engine operation.
52**	O ₂ signal stays above center (rich)	Oxygen sensor signal input indicates rich air/fuel ratio condition during engine operation.
53	Internal controller	Engine controller internal fault condition detected.
62	Controller Failure EMR miles not stored	Unsuccessful attempt to update EMR milage in the controller EEPROM.
63	Controller Failure EEPROM write denied	Unsuccessful attempt to write to an EEPROM location by the engine controller.
55	N/A	Completion of fault code display on Check Engine lamp.

FAULT CODE DESCRIPTION (CON'T)

+ Check Engine Lamp On

** Check Engine Lamp On (California Only)

CIRCUIT ACTUATION TEST MODE

The circuit actuation test mode checks for proper operation of output circuits or devices which the engine controller cannot internally recognize. The engine controller can attempt to activate these outputs and allow an observer to verify proper operation. Most of the tests provide an audible or visual indication of device operation (click of relay contacts, spray fuel, etc.). Except for intermittent conditions, if a device functions properly during testing, assume the device, its associated wiring, and driver circuit working correctly.

9214-46

OBTAINING CIRCUIT ACTUATION TEST

Connect the DRB II tester to the vehicle and access the Actuators screen. The following is a list of the engine control system functions accessible through Actuators screens:

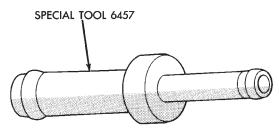
Stop All Tests Ignition Coil #1 Fuel Injector #1 AIS Motor Open/Close Radiator Fan Relay A/C Clutch Relay Auto Shutdown Relay Purge Solenoid S/C Servo Solenoids Alternator Field Tachometer Output PTU Solenoid (Automatic Only) All Solenoids/Relays ASD Fuel System Test

THROTTLE BODY MINIMUM AIR FLOW CHECK PROCEDURE

(1) Connect Diagnostic Readout Box II (DRB II).

(2) Remove air cleaner assembly. Plug the heated air door vacuum hose.

(3) Warm engine in Park or Neutral until the cooling fan has cycled on and off at least once.


(4) Hook-up timing check device and tachometer.

(5) Disconnect the coolant temperature sensor and set basic timing to $12^{\circ}BTDC \pm 2^{\circ}BTDC$.

(6) Shut off engine. Reconnect coolant temperature sensor.

(7) Disconnect the PCV valve hose from the intake manifold nipple.

(8) Attach Air Metering Fitting #6457 (Fig. 23) to the intake manifold PCV nipple.

9114-68

(9) Restart the engine, allow engine to idle for at least one minute.

(10) Using the DRBII, Access Min Airflow Idle Spd in the sensor read test mode.

(11) The following will then occur:

• AIS motor will fully close.

• Idle spark advance will become fixed.

• Idle fuel will be provided at a set value.

• Engine RPM will be displayed on Diagnostic Readout Box II (DRBII).

(12) Check idle RPM with tachometer. If idle RPM is within the specifications listed below, then the throttle body min. air flow is set correctly.

IDLE SPECIFICATIONS

Odometer Reading	Engine	Idle RPM
Below 1000 Miles	2.5L	650–1250 RPM
Above 1000 Miles	2.5L	1050–1250 RPM

9114-163

If idle RPM is not within specification replace throttle body.

(13) Shut off engine.

(14) Remove Special Tool number 6457 from intake manifold PCV nipple. Reinstall the PCV valve hose.

(15) Remove DRBII.

(16) Reinstall air cleaner assembly. Reinstall heated air door vacuum hose.

(17) Disconnect timing check device and tachometer.

IGNITION TIMING PROCEDURE

Refer to Group 8D Ignition System

60-WAY ENGINE CONTROLLER WIRING CONNEC-TOR

Refer to the engine controller wiring connector diagrams (Fig. 24) for information regarding wire colors and cavity numbers.

DESCRIPTION			AIS STEPPER #3 DRIVER	AIS STEPPER #1 DRIVER	OXYGEN SENSOR SIGNAL				SCI RECEIVE	CCD (-) BUS	VEHICLE DISTANCE SENSOR SIGNAL				auto shutdown relay and fuel pump relay	PURGE SOLENOID	SPEED CONTROL VENT SOLENOID	PART THROTTLE UNLOCK SOLENOID		EMISSION MAINTENANCE REMINDER LAMP	A142 CIRCUIT VOLTAGE SENSE		AIS STEPPER #4 DRIVER	R	LB LIGHT BLUE	I LG LIGHT GREEN WI WHILE		RD RED	TN TAN			0		
COLOR			GY/RD* A	BR/WT* AI	BK/DG* 0)				rg sc	WT/BK* C(WT/OR* VE				DB/YL* AI	PK/BK* PL	LG/RD* SF	OR/BK* PA			DG/OR* A1		VT/BK* AI	YL/BK* AI	WIRE COLOR CODES	ACK	DB DARK BLUE	DARK GREEN	GRAY					CONNECTOR TERMINAL SIDE
Cð	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54 (55		57	58	59	60	WIRE	BK BLACK		DG D/	GY GF					CON
							SENSOR)																											
DESCRIPTION			GE			P AND TPS)	(IBUTOR PICKUP AND DISTANCE SENSOR)	RT SIGNAL)	START/RUN)										R #1	NTROL		ENSOR		PICKUP						H (AUTO TRANS.)		JUM SOLENOID		
	3* MAP SENSOR SIGNAL	* COOLANT SENSOR	T* DIRECT BATTERY VOLTAGE	* SENSOR RETURN	T* SIGNAL GROUND	* 5.0 VOLT OUTPUT (MAP AND TPS)	9.0 VOLT OUTPUT (DISTRIBUTOR PICKUP AND DISTANCE SENSOR)	B1 VOLTAGE SENSE (START SIGNAL)	A21 SUPPLY (IGNITION START/RUN)		* POWER GROUND	I* POWER GROUND				3* FUEL INJECTOR DRIVER			IGNITION COIL DRIVER #1	ALTERNATOR FIELD CONTROL		THROTTLE POSITION SEN	* SPEED CONTROL SENSE	* IGNITION REFERENCE PICKUP	SCITRANSMIT	* CCD (+) BUS	A/C SWITCH SENSE		X* BRAKE SWITCH	 PARK/NEUTRAL SWITCH (AUTO TRANS.) 	* RADIATOR FAN RELAY	3* SPEED CONTROL VACUUM SOLENOID	X* A/C CLUTCH RELAY	EGR SOLENOID
CAV WIKE DESCRIPTION	DG/RD* MAP SENSOR SIGNAL	TN/BK* COOLANT SENSOR	1	BK/LB* SENSOR RETURN	BK/WT* SIGNAL GROUND	VT/WT* 5.0 VOLT OUTPUT (MAP AND TPS)	OR 9.0 VOLT OUTPUT (DISTRIBUTOR PICKUP AND DISTANCE SENSOR)	WT BI VOLTAGE SENSE (START SIGNAL)	DB A21 SUPPLY (IGNITION START/RUN)		BK/TN* POWER GROUND	BK/TN* POWER GROUND				WT/DB* FUEL INJECTOR DRIVER			GY IGNITION COIL DRIVER #1	DG ALTERNATOR FIELD CONTROL		22 OR/DB* THROTTLE POSITION SENSOR	23 RD/LG* SPEED CONTROL SENSE	GY/BK* IGNITION REFERENCE PICKUP	25 PK SCITRANSMIT	26 VT/BR* CCD (+) BUS	BR A/C SWITCH SENSE	28	29 WT/PK* BRAKE SWITCH	30 BR/YL* PARK/NEUTRAL SWITCH (AUTO TRANS.)	DB/PK*	33 TN/RD* SPEED CONTROL VACUUM SOLENOID	DB/OR*	35 GY/YL* EGR SOLENOID

Fig. 24 Engine Controller Wiring Connector Cavity Description

14 - 44 FUEL SYSTEM

9214-7

page

2.5L SINGLE POINT FUEL INJECTION—SERVICE PROCEDURES

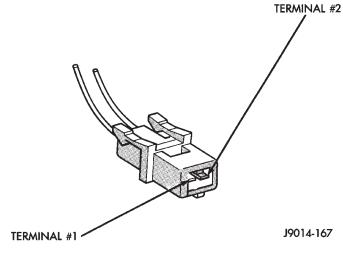
INDEX

page

Automatic Idle Speed (AIS) Motor	50
Canister Purge Solenoid	50
Engine Controller	
Fuel Fitting	47
Fuel Injector	48
Fuel Lines and Hoses	1

FUEL LINES AND HOSES

Release fuel system pressure before servicing the fuel system. Preform the "Fuel System Pressure Relief Procedure".


Do not damage the hose or hose nipple when removing the fuel hoses. Always use new hose clamps, of the correct type, during reassembly. Tighten hose clamps to 1 Nom (10 in. lbs.) torque. Do not use aviation style clamps on this system or hose damage may result.

FUEL SYSTEM PRESSURE RELEASE PROCEDURE

CAUTION: Before servicing the fuel pump, fuel lines, fuel filter, throttle body, or fuel injector, the fuel system pressure must be released.

(1) Loosen fuel filler cap to release fuel tank pressure.

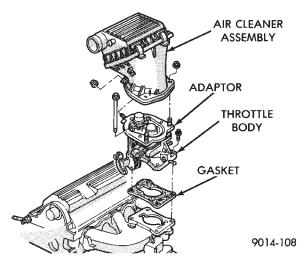
(2) Disconnect injector wiring harness connector (Fig. 1).

(3) Connect a jumper wire between terminal Number 1 of the injector harness and engine ground.

Fuel Pressure Regulator	48
Fuel System Pressure Release Procedure	1
Manifold Absolute Pressure Sensor	
Oxygen Sensor (O ₂ Sensor)	
Throttle Body	1
Throttle Position Sensor	49

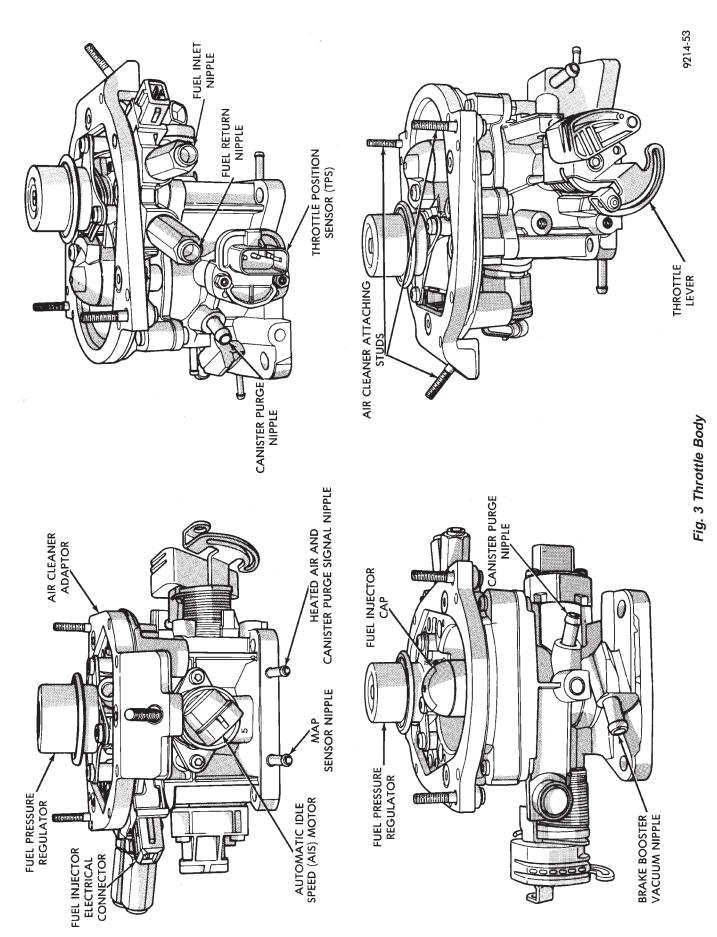
(4) Connect a jumper wire to the positive terminal Number 2 of the injector harness and touch the battery positive post for no longer than 5 seconds. This releases system pressure.

- (5) Remove jumper wires.
- (6) Continue fuel system service.


THROTTLE BODY

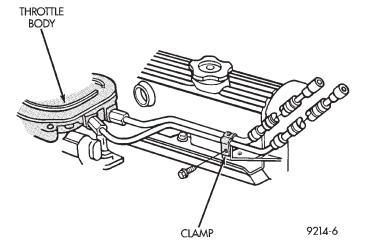
CAUTION: The fuel system is under a constant pressure of 270 kPa (39 psi). Perform the Fuel Pressure Release Procedure before servicing the throttle body.

Always reassemble throttle body components with new O-rings and seals where applicable. Never use silicone lubricants on O-rings or seals, damage may result. Use care when removing fuel tubes to prevent damage to quick connect fittings or tube ends. Refer to Fuel Hoses, Clamps, and Quick Connect Fittings in the Fuel Delivery Section of this Group.


REMOVAL

- (1) Remove air cleaner (Fig. 2).
- (2) Perform fuel system pressure release.
- (3) Disconnect negative battery cable.

Fig. 2 Throttle Body and Air Cleaner Assembly


(4) Disconnect vacuum hoses and electrical connectors (Fig. 3).

(5) Remove throttle cable. If equipped, remove the speed control and transmission kickdown cables.

(6) Remove return spring.

(7) Loosen fuel tube clamp on valve cover (Fig. 4).

Fig. 4 Fuel Line Clamp

(8) Wipe quick connect fittings to remove any dirt. Remove fuel intake and return tubes. **Refer to Fuel Hoses, Clamps and Quick Connect Fittings in the Fuel Delivery Section of this Group.** Place a shop towel under the connections to absorb any fuel spilled.

(9) Remove throttle body mounting screws and lift throttle body from vehicle. Remove throttle body gasket from intake manifold.

INSTALLATION

(1) Using a new gasket, install throttle body and tighten mounting screws to 20 Nom (175 in. lbs.) torque.

(2) Lubricate the ends of the fuel supply and return tubes with 30 weight oil. Connect fuel lines to quick connect fittings. **Refer to Fuel Hoses, Clamps and Quick Connect Fittings in the Fuel Delivery Section of this Group**. After the fuel tubes are connected to the fittings, pull on the tubes to ensure that they are fully inserted and locked into position.

- (3) Tighten the fuel tube clamp on the valve cover.
- (4) Install return spring.

(5) Install throttle cable. If equipped, install kickdown and speed control cables.

(6) Install wiring connectors and vacuum hoses.

- (7) Install air cleaner.
- (8) Reconnect negative battery cable.

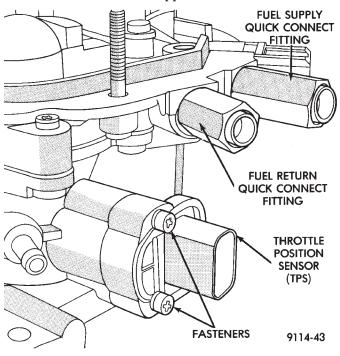
CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position. (9) With the ignition key in ON position, access the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

FUEL FITTING

REMOVAL

(1) Remove air cleaner assembly.

(2) Perform Fuel System Pressure Release procedure.


(3) Disconnect negative battery cable.

(4) Loosen fuel tube clamp on valve cover.

(5) Wipe any dirt from around quick connect fittings.

(Fig. 5) Place a shop towel under the connections to catch any spilled fuel. Remove fuel tubes from quick connect fittings. **Refer to Fuel Hoses, Clamps and Quick Connect Fittings in the Fuel Delivery Section of this Group**.

(6) Remove each fitting from throttle body and note inlet diameter. Remove copper washers.

Fig. 5 Servicing Fuel Fitting

INSTALLATION

(1) Replace copper washers with new washers.

(2) Install fuel fittings in proper ports and tighten to 20 Nom (175 in. lbs.) torque.

(3) Lubricate ends of the fuel tubes with 30 weight oil. Insert the tubes into the quick connect fittings. **Refer to Fuel Hoses, Clamps and Quick Connect Fittings in the Fuel Delivery Section of this Group**. After the fuel tubes are connected to the fittings, pull on the tubes to ensure that they are fully inserted and locked into position.

(4) Tighten fuel tube clamp on valve cover.

(5) Reconnect negative battery cable.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(6) With the ignition key in ON position, access the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

(7) Reinstall air cleaner assembly.

FUEL PRESSURE REGULATOR

The fuel pressure regulator is mounted on top of the throttle body (Fig. 6).

REMOVAL

(1) Remove air cleaner assembly.

(2) Perform Fuel System Pressure Release procedure.

(3) Disconnect battery negative cable.

(4) Remove pressure regulator mounting screws (Fig. 6).

WARNING: PLACE A SHOP TOWEL AROUND FUEL INLET CHAMBER TO CONTAIN ANY FUEL REMAIN-ING IN THE SYSTEM.

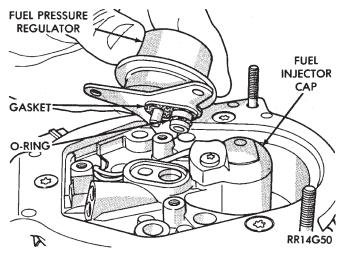


Fig. 6 Servicing Fuel Pressure Regulator

(5) Pull pressure regulator from the throttle body.

(6) Carefully remove O-ring from pressure regulator and remove gasket.

INSTALLATION

(1) Place new gasket on pressure regulator. Carefully install new O-ring.

(2) Position pressure regulator on throttle body. Press regulator into place and install mounting screws. Tighten screws to 5 Nom (40 in. lbs.) torque.

(3) Connect negative cable to battery.

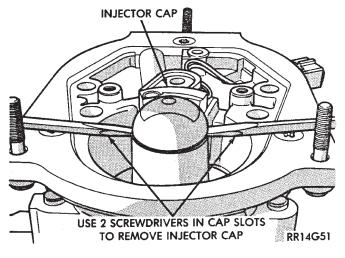
CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position. (4) With the ignition key in ON position, access the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

(5) Reinstall air cleaner assembly.

FUEL INJECTOR

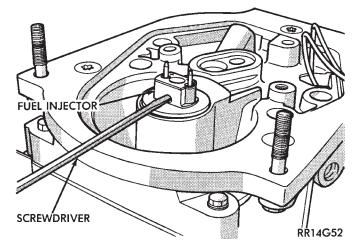
The fuel injector is installed in the top of the throttle body. The injector is covered by a cap.

REMOVAL


(1) Remove air cleaner assembly.

(2) Perform Fuel System Pressure Release procedure.

(3) Disconnect negative cable from battery.


(4) Remove injector cap holddown screw (Torx-head).

(5) With two small screwdrivers, lift the top off the injector using the slots provided (Fig. 7).

Fig. 7 Removing Injector Cap

(6) Using a small screwdriver placed in the hole in the front of the electrical connector, gently pry the injector from the pod (Fig. 8).

Fig. 8 Removing Fuel Injector

(7) Ensure the injector lower O-ring has been removed from the pod (Fig. 9).

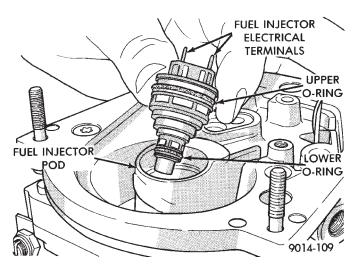


Fig. 9 Servicing Fuel Injector

INSTALLATION

(1) Place a new O-ring on the injector cap. The injector will have the upper and lower O-rings already installed (Fig. 9).

(2) Apply a light coating of clean engine oil on the O-rings.

(3) Place assembly in the pod. Align the injector wiring terminals with the injector cap fastener hole (Fig. 10).

Fig. 10 Fuel Injector Installation

(4) Install injector cap with locating notch aligned with the locating lobe on the injector (Fig. 11).

(5) Push down on the cap to ensure a good seal.

(6) Rotate the cap and injector to line up the attachment hole (Fig. 12).

(7) Install injector cap holddown screw (torx-head screw). Tighten screw to 4-5 Nom (35-45 in. lbs.) torque.

(8) Connect negative cable to battery.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7

minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(9) With the ignition key in ON position, access the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

(10) Reinstall the air cleaner assembly.

THROTTLE POSITION SENSOR

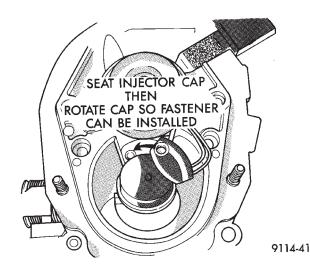
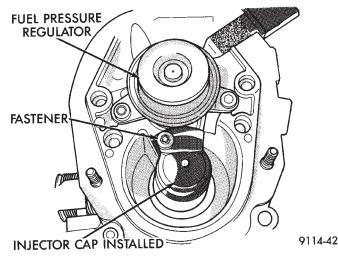
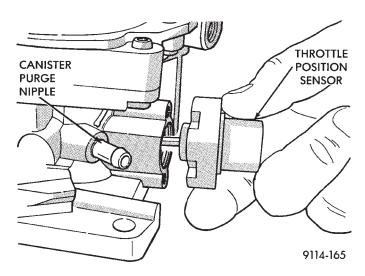



Fig. 11 Installing Fuel Injector Cap

Fig. 12 Fuel Injector Installed

REMOVAL


(1) Disconnect negative cable from battery.

(2) Remove air cleaner.

(3) Disconnect harness connector from throttle position sensor (Fig. 13).

(4) Remove throttle position sensor mounting screws.

(5) Remove throttle position sensor from throttle shaft.

Fig. 13 Servicing Throttle Position Sensor

INSTALLATION

(1) Install throttle position sensor to throttle body, position toward the front of the vehicle. Tighten screws to 2 Nom (20 in. lbs.) torque.

(2) Connect harness connector to throttle position sensor.

- (3) Install air cleaner.
- (4) Connect negative cable to battery.

AUTOMATIC IDLE SPEED (AIS) MOTOR

The automatic idle speed (AIS) motor is mounted on the throttle body (Fig. 14).

REMOVAL

- (1) Remove air cleaner.
- (2) Disconnect negative cable from battery.
- (3) Disconnect AIS motor connector.

(4) Remove AIS motor mounting screws (Torx head screws, 25 mm long).

(5) Remove AIS from throttle body housing. Ensure O-ring is with AIS (Fig. 14).

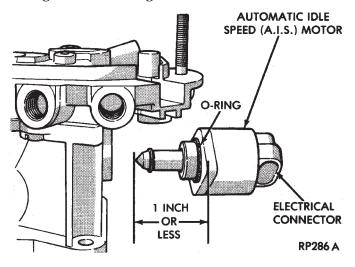


Fig. 14 Servicing Automatic Idle Speed (AIS) Motor

INSTALLATION

(1) Ensure that AIS motor pintle is in the retracted position. **If pintle measures more than 1 inch (25 mm)** as shown in Fig. 14, it must be retracted. Use the DRB II Actuate Outputs Test, AIS MOTOR OPEN/CLOSE (battery must be connected for this operation).

(2) Install new O-ring on AIS.

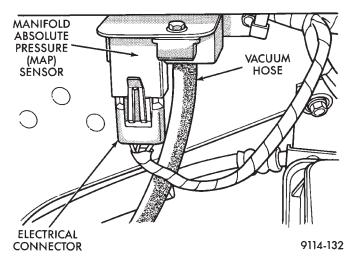
(3) Install AIS motor into housing, ensuring the O-ring is in place.

(4) Tighten mounting screws to 2 Nom (20 in. lbs.) torque.

(5) Connect harness electrical connector to AIS motor.

(6) Connect negative cable to battery.

MANIFOLD ABSOLUTE PRESSURE SENSOR


The MAP sensor is mounted underhood on the dash panel (Fig. 15)

REMOVAL

(1) Remove vacuum hose and electrical connector from sensor (Fig. 15).

(2) Remove sensor mounting screws. Remove sensor.

(3) Reverse the above procedure for installation. Check the vacuum hose and electrical connections to the sensor.

Fig. 15 Manifold Absolute Pressure (MAP) Sensor

CANISTER PURGE SOLENOID

(1) Remove vacuum hose and electrical connector from solenoid (Fig. 16).

(2) Depress tab on top of solenoid and slide the solenoid downward out of mounting bracket.

(3) Reverse the above procedure for installation.

ENGINE CONTROLLER

The engine controller is mounted underhood on the drivers side inner fender panel.

- (1) Remove air cleaner duct from engine controller.
- (2) Remove battery.

(3) Remove engine controller mounting screws (Fig. 17).

(4) Remove electrical connector from engine controller. Remove engine controller.

(5) Reverse the above procedure for installation.

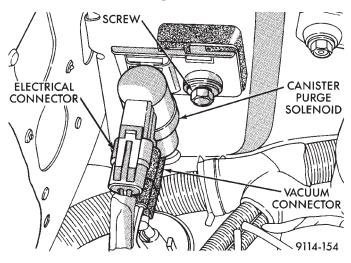


Fig. 16 Canister Purge Solenoid

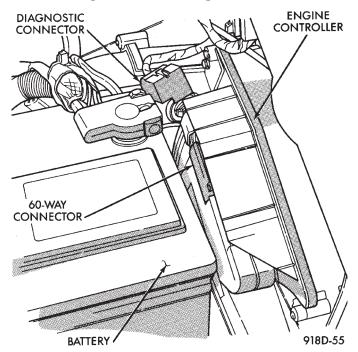


Fig. 17 Engine Controller

OXYGEN SENSOR (0₂ SENSOR)

The oxygen sensor is installed in the exhaust manifold (Fig. 18).

CAUTION: Do not pull on the oxygen sensor wire when disconnecting the electrical connector.

WARNING: THE EXHAUST MANIFOLD MAY BE EX-TREMELY HOT. USE CARE WHEN SERVICING THE OXYGEN SENSOR.

- (1) Disconnect oxygen sensor electrical connector (Fig. 19).
 - (2) Remove sensor using Tool C-4907 (Fig. 20).

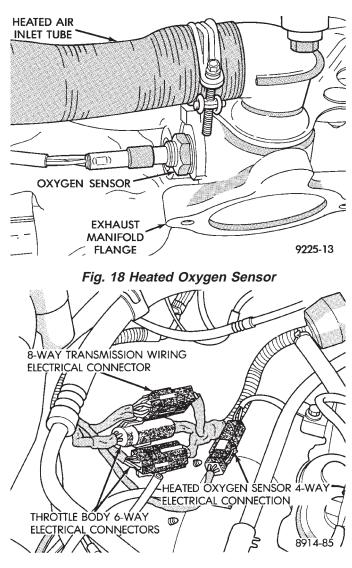
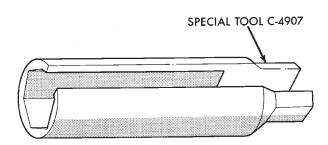



Fig. 19 Oxygen Sensor Electrical Connection

9114-106

Fig. 20 Oxygen Sensor Socket

When the sensor is removed, the exhaust manifold threads must be cleaned with an 18 mm X 1.5 + 6E tap. If using original sensor, coat the threads with Loctite 771-64 anti-seize compound or equivalent. New sen-

sors are packaged with compound on the threads and no additional compound is required. The sensor must be tightened to 27 Nom (20 ft. lbs.) torque.

3.0L MULTI-POINT FUEL INJECTION—SYSTEM OPERATION

INDEX

page

Air Conditioning (A/C) Clutch Relay—Engine	
Controller Output	57
Air Conditioning Switch Sense—Engine Controller	
Input	54
Alternator Field—Engine Controller Output	57
Auto Shutdown (ASĎ) Relay and Fuel Pump	57
Relay—Engine Controller OutputAutomatic Idle Speed (AIS) Motor—Engine	57
Controller Output	58
Battery Voltage—Engine Controller Input	54
Brake Switch—Engine Controller Input	54
Canister Purge Solenoid—Engine Controller	
Check Engine Lamp—Engine Controller Output	59
Coolant Temperature Sensor—Engine Controller	E /
Input	
Distributor Pick-Up—Engine Controller Input	54
Electronic Automatic Transmission Controller—	04
Engine Controller Output	59
Emission Maintenance Reminder (EMR) Lamp—	
Engine Controller Output	
Engine Controller	53
Engine Controller Reprogramming (Flash)	54

GENERAL INFORMATION

The 3.0L engine uses a sequential Multi-point Electronic Fuel Injection system (Fig. 1). The MPI system is computer regulated and provides precise air/fuel ratios for all driving conditions.

The MPI system is operated by the Single Board Engine Controller II (SBEC II), **referred to in this manual as the engine controller.**

The engine controller regulates ignition timing, airfuel ratio, emission control devices, cooling fan, charging system, idle speed and speed control. Various sensors provide the inputs necessary for the engine controller to correctly operate these systems. In addition to the sensors, various switches also provide inputs to the engine controller.

All inputs to the engine controller are converted into signals. The engine controller can adapt its programming to meet changing operating conditions.

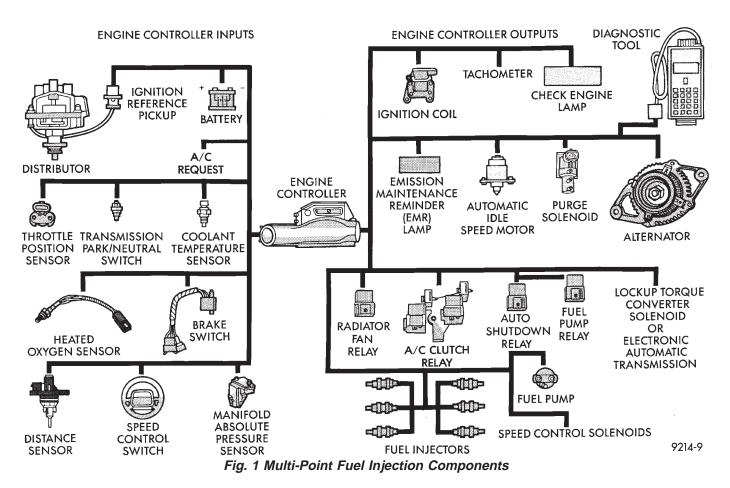
Fuel is injected into the intake port above the intake valve in precise metered amounts through electrically operated injectors. The engine controller fires the injectors in a specific sequence. The controller maintains

Fuel Injectors Engine Controller Output Fuel Pressure Regulator	
Fuel Supply Circuit Supply Circuit	62
General Information	52
Ignition Coil—Engine Controller Output	60
Manifold Absolute Pressure (MAP) Sensor— Engine Controller Input	55
Modes of Operation	60
Oxygen Sensor (O ₂ Sensor)—Engine Controller	
	56
Part Throttle Unlock Solenoid—Engine Controller Output	60
Radiator Fan Relay—Engine Controller Output	
Speed Control Solenoids—Engine Controller	
Output Speed Control—Engine Controller Input	60
Tachometer—Engine Controller Output	56 60
Throttle Body	62
Throttle Position Sensor (TPS)—Engine Controller	
Input	56
Transmission Park/Neutral Switch—Engine Controller Input	56
Vehicle Distance (Speed) Sensor—Engine	
Controller Input	57

an air fuel ratio of 14.7 parts air to 1 part fuel by constantly adjusting injector pulse width. Injector pulse width is the length of time the injector is open.

The engine controller adjusts injector pulse width by opening and closing the ground path to the injector. Engine RPM (speed) and manifold absolute pressure (air density) are the primary inputs that determine injector pulse width.

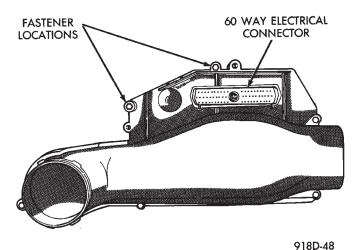
SYSTEM DIAGNOSIS


The engine controller tests many of its own input and output circuits. If a fault is found in a circuit, the information is stored in the memory. Fault codes can displayed using the Check Engine lamp. Also, the technician can obtain the fault description by connecting the DRB II to the vehicle.

CCD BUS

Various controllers and modules exchange information through a communications port called the CCD Bus. The engine controller transmits the check en-

★


page



gine lamp On/Off signal, engine RPM and vehicle load data on the CCD Bus.

ENGINE CONTROLLER

The engine controller is a digital computer containing a microprocessor (Fig. 2). The controller receives input signals from various switches and sensors that are referred to as Engine Controller Inputs. Based on these inputs, the controller adjusts various engine and vehicle operations through devices that are referred to as Engine Controller Outputs.

- Air Conditioning Controls
- Battery Voltage
- Brake Switch
- Coolant Temperature Sensor
- Distributor Pick-up
- Manifold Absolute Pressure (MAP) Sensor
- Oxygen Sensor
- SCI Receive
- Speed Control System Controls
- Throttle Position Sensor
- Park/Neutral Switch (automatic transmission)
- Vehicle Distance (Speed) Sensor Engine Controller Outputs:
- Air Conditioning Clutch Relay
- Alternator Field
- Automatic Idle Speed (AIS) Motor
- Auto Shutdown (ASD) and Fuel Pump Relays
- Canister Purge Solenoid
- Check Engine Lamp
- Diagnostic Connector
- Electric EGR Transducer (EET)
- Emission Maintenance Reminder (EMR) Lamp
- Fuel Injectors
- Ignition Coil
- Part Throttle Unlock (PTU) Solenoid
- Radiator Fan Relay
- Speed Control Solenoids

Fig. 2 Engine Controller

• Tachometer Output

Based on inputs it receives, the engine controller adjusts fuel injector pulse width, idle speed, ignition spark advance, ignition coil dwell and canister purge operation. The engine controller regulates the cooling fan, air conditioning and speed control systems. The controller changes alternator charge rate by adjusting the alternator field.

The engine controller adjusts injector pulse width (air-fuel ratio) based on the following inputs.

- battery voltage
- coolant temperature
- exhaust gas content
- engine speed (distributor pick-up)
- manifold absolute pressure
- throttle position

The engine controller adjusts ignition timing based on the following inputs.

- coolant temperature
- engine speed (distributor pick-up)
- manifold absolute pressure
- throttle position

The Automatic Shut Down (ASD) and Fuel Pump relays are mounted externally, but turned on and off by the engine controller through the same circuit.

The distributor pick-up signal is sent to the engine controller. If the engine controller does not receive a distributor signal within approximately one second of engine cranking, the ASD relay and fuel pump relay are deactivated. When these relays are deactivated, power is shut off to the fuel injector, ignition coil, oxygen sensor heating element and fuel pump.

The engine controller contains a voltage converter that changes battery voltage to a regulated 9.0 volts to power the distributor pick-up and vehicle speed sensor. The controller also provides a 5.0 volts supply for the manifold absolute pressure sensor and throttle position sensor.

AIR CONDITIONING SWITCH SENSE—ENGINE CONTROLLER INPUT

When the air conditioning or defrost switch is in the ON position and the low pressure, high pressure and ambient temperature switches are closed, the controller receives an input for air conditioning. After receiving this input, the engine controller activates the A/C compressor clutch by grounding the A/C clutch relay. The engine controller also adjusts idle speed to a scheduled RPM to compensate for increased engine load.

BATTERY VOLTAGE—ENGINE CONTROLLER INPUT

The engine controller monitors the battery voltage input to determine fuel injector pulse width and alternator field control.

If battery voltage is low the engine controller will increase injector pulse width (period of time that the injector is energized).

BRAKE SWITCH—ENGINE CONTROLLER INPUT

When the brake switch is activated, the engine controller receives an input indicating that the brakes are being applied. After receiving this input the engine controller maintains idle speed to a scheduled RPM through control of the Automatic Idle Speed Motor. The brake switch is mounted on the brake pedal support bracket.

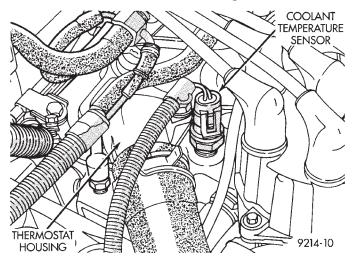
COOLANT TEMPERATURE SENSOR—ENGINE CON-TROLLER INPUT

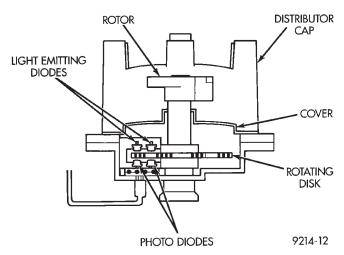
The coolant temperature sensor is a variable resistor with a range of -40°F to 265°F. The sensor is installed next to the thermostat housing.

The coolant temperature sensor provides an input voltage to the engine controller (Fig. 3). As coolant temperature varies the coolant temperature sensors resistance changes resulting in a different input voltage to the engine controller.

When the engine is cold, the engine controller will demand slightly richer air-fuel mixtures and higher idle speeds until normal operating temperatures are reached.

This sensor is also used for cooling fan control.




Fig. 3 Coolant Temperature Sensor

DISTRIBUTOR PICK-UP—ENGINE CONTROLLER INPUT

The distributor pick-up provides two inputs to the engine controller. From one input the engine controller determines RPM (engine speed). From the other input it derives crankshaft position. The engine controller regulates injector synchronization and adjusts ignition timing and engine speed based on these inputs.

The distributor pick-up contains two signal generators. The pick-up unit consists of 2 light emitting diodes (LED), 2 photo diodes, and a separate timing disk. The timing disk contains two sets of slots. Each set of slots rotates between a light emitting diode and a photo diode (Fig. 4). The inner set contains 6

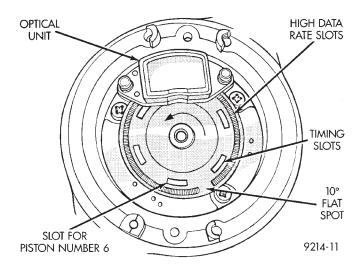
large slots, one for each cylinder. The outer set contains several smaller slots.

Fig. 4 Distributor Pick-up

The outer set of slots on the rotating disk represents 2 degrees of crankshaft rotation. Up to 1200 engine RPM, the controller uses the input from the outer set of slots to increase ignition timing accuracy.

The outer set of slots contains a 10 degree flat spot. This area is not slotted (Fig. 5). The flat spot tells the engine controller that the next piston at TDC will be number 6. The position of each piston is referenced by one of the six inner slots (Fig. 5).

As each slot on the timing disk passes between the diodes, the beam from the light emitting diode is interrupted. This creates an alternating voltage in each photo diode which is converted into on-off pulses. The pulses are the input to the engine controller.


During cranking, the controller cannot determine crankshaft position until the 10 degree flat spot on the outer set of slots passes through the optical unit. Once the flat spot is detected, the controller knows piston in cylinder number 6 will be the next piston at TDC.

Since the disk rotates at half crankshaft speed, it may take 2 engine revolutions during cranking for the controller to determine the position of piston number 6. For this reason the engine controller will energize all six injectors at the same time until it senses the position of piston number 6.

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR—ENGINE CONTROLLER INPUT

The engine controller supplies 5 volts to the MAP sensor. The Map sensor converts intake manifold pressure into voltage. The engine controller monitors the MAP sensor output voltage. As vacuum increases, MAP sensor voltage decreases proportionately. Also, as vacuum decreases, MAP sensor voltage increases proportionately.

During cranking, before the engine starts running, the engine controller determines atmospheric air pressure from the MAP sensor voltage. While the engine

Fig. 5 Inner and Outer Slots of Rotating Disk—3.0L Engine

operates, the controller determines intake manifold pressure from the MAP sensor voltage.

Based on MAP sensor voltage and inputs from other sensors, the engine controller adjusts spark advance and the air/fuel mixture.

The MAP sensor (Fig. 6) mounts on a bracket attached to the alternator bracket. The sensor is connected to the throttle body with a vacuum hose and to the engine controller electrically.

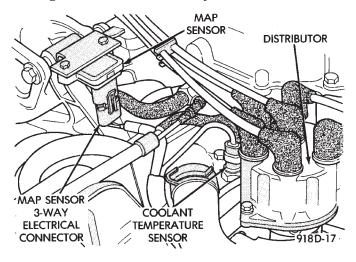


Fig. 6 Map Sensor

OXYGEN SENSOR (O₂ SENSOR)—ENGINE CON-TROLLER INPUT

The O_2 sensor is located in the exhaust manifold and provides an input voltage to the engine controller. The input tells the engine controller the oxygen content of the exhaust gas (Fig. 7). The engine controller uses this information to fine tune the air-fuel ratio by adjusting injector pulse width.

Fig. 7 Oxygen Sensor—3.0L Engine

The O_2 sensor produces voltages from 0 to 1 volt, depending upon the oxygen content of the exhaust gas in the exhaust manifold. When a large amount of oxygen is present (caused by a lean air-fuel mixture), the sensor produces a low voltage. When there is a lesser amount present (rich air-fuel mixture) it produces a higher voltage. By monitoring the oxygen content and converting it to electrical voltage, the sensor acts as a rich-lean switch.

The oxygen sensor is equipped with a heating element that keeps the sensor at proper operating temperature during all operating modes. Maintaining correct sensor temperature at all times allows the system to enter into closed loop operation sooner. Also, it allow the system to remain in closed loop operation during periods of extended idle.

In "Closed Loop" operation the engine controller monitors the O_2 sensor input (along with other inputs) and adjusts the injector pulse width accordingly. During "Open Loop" operation the engine controller ignores the O_2 sensor input. The controller adjusts injector pulse width based on preprogrammed (fixed) values and from inputs of other sensors.

SPEED CONTROL—ENGINE CONTROLLER INPUT

The speed control system provides four separate voltages (inputs) to the engine controller. The voltages correspond to the On/Off, Set, and Resume.

The speed control On voltage informs the engine controller that the speed control system has been activated. The speed control Set voltage informs the controller that a fixed vehicle speed has been selected. The speed control Resume voltage indicates the previous fixed speed is requested. The speed control Off voltage tells the controller that the speed control system has deactivated. Refer to Group 8H for further speed control information.

TRANSMISSION PARK/NEUTRAL SWITCH—ENGINE CONTROLLER INPUT

The park/neutral switch is located on the transmission housing (Fig. 8 or Fig. 9). It provides an input to the engine controller indicating whether the automatic transmission is in Park, Neutral, or a drive gear selection. This input is used to determine idle speed (varying with gear selection), fuel injector pulse width, and ignition timing advance. The park/neutral switch is sometimes referred to as the neutral safety switch.

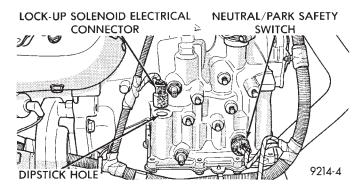


Fig. 8 Park Neutral Switch—3-Speed Automatic Transaxle

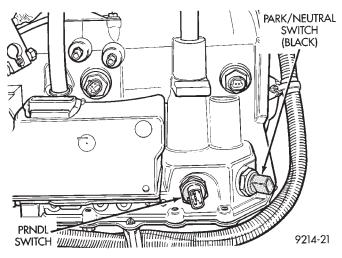


Fig. 9 Park Neutral Switch—4-Speed Electronic Automatic Transaxle

THROTTLE POSITION SENSOR (TPS)—ENGINE CONTROLLER INPUT

The Throttle Position Sensor (TPS) is mounted on the throttle body and connected to the throttle blade shaft (Fig. 10). The TPS is a variable resistor that provides the engine controller with an input signal

★

(voltage) representing throttle blade position. As the position of the throttle blade changes, the resistance of the TPS changes.

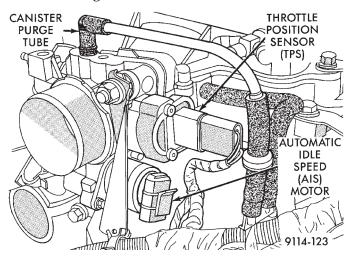


Fig. 10 Throttle Position Sensor

The engine controller supplies approximately 5 volts to the TPS. The TPS output voltage (input signal to the engine controller) represents throttle blade position. The TPS output voltage to the controller varies from approximately 0.5 volt at minimum throttle opening (idle) to 3.5 volts at wide open throttle. The wide open throttle input is approximately 3 volts more than the minimum throttle opening value.

Along with inputs from other sensors, the engine controller uses the TPS input to determine current engine operating conditions. After determining the current operating conditions, the controller adjust fuel injector pulse width and ignition timing.

VEHICLE DISTANCE (SPEED) SENSOR—ENGINE CONTROLLER INPUT

The distance sensor (Fig. 11) is located in the transmission extension housing. The sensor input is used by the engine controller to determine vehicle speed and distance traveled.

The distance sensor generates 8 pulses per sensor revolution. These signals are interpreted along with a closed throttle signal from the throttle position sensor by the engine controller. The inputs are used to determine if a closed throttle deceleration or a normal idle (vehicle stopped) condition exists. Under deceleration conditions, the engine controller adjusts the AIS motor to maintain a desired MAP value. Under idle conditions, the engine controller adjusts the AIS motor to maintain a desired engine speed.

AIR CONDITIONING (A/C) CLUTCH RELAY—ENGINE CONTROLLER OUTPUT

The engine controller operates the air conditioning clutch relay ground circuit (Fig. 12). The ignition switch supplies battery power to the solenoid side of the relay. The A/C fan relay is operated independently

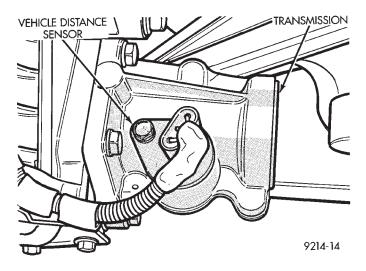


Fig. 11 Vehicle Distance (Speed) Sensor

of the engine controller by the Fan Cutout switch. When the A/C clutch relay energizes, battery voltage powers the A/C compressor clutch.

With the engine operating and the blower motor switch in the On position, the engine controller cycles the air conditioning clutch on and off when the A/C switch closes. When the engine controller senses low idle speeds or wide open throttle through the throttle position sensor, it de-energizes the A/C clutch relay. The relay contacts open, preventing air conditioning clutch engagement.

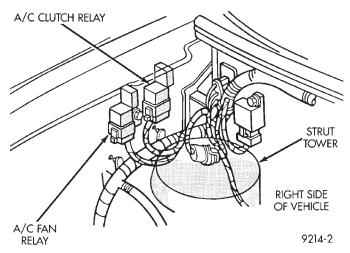


Fig. 12 Relay Identification

ALTERNATOR FIELD—ENGINE CONTROLLER OUT-PUT

The engine controller regulates the charging system voltage within a range of 12.9 to 15.0 volts. Refer to Group 8A for charging system information.

AUTO SHUTDOWN (ASD) RELAY AND FUEL PUMP RELAY—ENGINE CONTROLLER OUTPUT

The engine controller operates the auto shutdown (ASD) relay and fuel pump relay through one ground

path. The controller operates the relays by switching the ground path on and off. Both relays turn on and off at the same time.

The ASD relay connects battery voltage to the fuel injector and ignition coil. The fuel pump relay connects battery voltage to the fuel pump and oxygen sensor heating element.

The engine controller turns the ground path off when the ignition switch is in the Off position. Both relays are off. When the ignition switch is in the On or Crank position, the engine controller monitors the distributor pick-up signal to determine engine speed and ignition timing (coil dwell). If the engine controller does not receive a distributor signal when the ignition switch is in the Run position, it will de-energize both relays. When the relays are de-energized, battery voltage is not supplied to the fuel injector, ignition coil, fuel pump and oxygen sensor heating element.

The ASD relay and fuel pump relay are mounted on the drivers side fender well, near to the engine controller (Fig. 13).

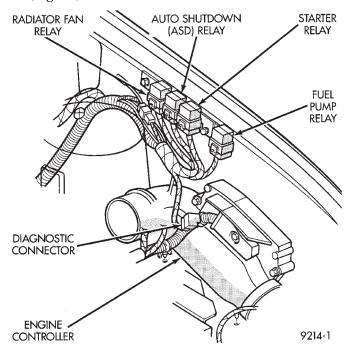


Fig. 13 Auto Shutdown Relay

AUTOMATIC IDLE SPEED (AIS) MOTOR—ENGINE CONTROLLER OUTPUT

The idle speed stepper motor is mounted on the throttle body and is controlled by the engine controller (Fig. 10). The engine controller adjusts engine idle speed through the AIS to compensate for engine load or ambient conditions.

The throttle body has an air bypass passage that provides air for the engine at idle (the throttle blade is closed). The AIS motor pintle protrudes into the air bypass passage and regulates air flow through it.

The engine controller adjusts engine idle speed by moving the AIS motor pintle in and out of the bypass passage. The adjustments are based on inputs the controller receives. The inputs are from the throttle position sensor, engine speed sensor (distributor pick-up coil), coolant temperature sensor, and various switch operations (brake, park/neutral, air conditioning). Deceleration die out is also prevented by increasing airflow when the throttle is closed quickly after a driving (speed) condition.

CANISTER PURGE SOLENOID—ENGINE CONTROL-LER OUTPUT

Vacuum for the evaporative canister is controlled by the Canister Purge Solenoid (Fig. 14). The solenoid is controlled by the engine controller.

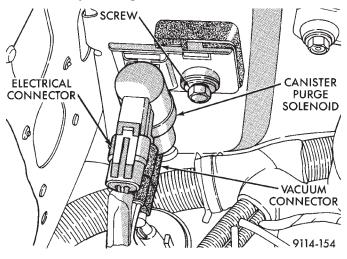


Fig. 14 Canister Purge Solenoid

The engine controller operates the solenoid by switching the ground circuit on and off. The controller turns the ground path on and off based on engine operating conditions. When energized, the solenoid prevents vacuum from reaching the evaporative canister. When not energized the solenoid allows vacuum to flow to the canister.

During warm-up and for a specified time period after hot starts the engine controller grounds the purge solenoid causing it to energize. Vacuum does not operate the evaporative canister valve.

The engine controller removes the ground to the solenoid when the engine reaches a specified temperature and the time delay interval has occurred. When the solenoid is de-energized, vacuum flows to the canister purge valve. Vapors are purged from the canister and flow to the throttle body.

The purge solenoid will also be energized during certain idle conditions, in order to update the fuel delivery calibration.

★

CHECK ENGINE LAMP—ENGINE CONTROLLER OUTPUT

The engine controller supplies a check engine lamp on/off signal to the instrument panel through the CCD Bus. The CCD Bus is a communications port. Various modules use the CCD Bus to exchange information.

The check engine lamp comes on each time the ignition key is turned ON and stays on for 3 seconds as a bulb test. The check engine lamp warns the operator that the engine controller has entered a Limp-in mode. During Limp-in Mode, the controller attempts to keep the system operational. The check engine lamp signals the need for immediate service. In limp-in mode, the Engine controller compensates for the failure of certain components that send incorrect signals. The controller substitutes for the incorrect signals with inputs from other sensors.

Signals that can trigger the Check Engine Lamp.

- Coolant Temperature Sensor
- Manifold Absolute Pressure Sensor
- Throttle Position Sensor
- Battery Voltage Input
- An Emission Related System (California vehicles)
- Charging system

The Check Engine Lamp can also be used to display fault codes. Cycle the ignition switch on, off, on, off, on, within five seconds and any fault codes stored in the Engine controller will be displayed. Refer to On Board Diagnostics in the General Diagnosis—Multi-Point Fuel Injection, 3.0L Engine section of this Group for Fault Code Descriptions.

DIAGNOSTIC CONNECTOR—ENGINE CONTROLLER OUTPUT

The diagnostic connector provides the technician with the means to connect the DRB II tester to diagnosis the vehicle.

ELECTRONIC AUTOMATIC TRANSMISSION CONTROLLER—ENGINE CONTROLLER OUTPUT

The Electronic Automatic Transmission Controller and the Engine Controller supply information to each other through the CCD Bus. The information includes engine speed and vehicle load. The engine controller uses the information when adjusting the fuel and ignition strategy.

EMISSION MAINTENANCE REMINDER (EMR) LAMP—ENGINE CONTROLLER OUTPUT

The Emissions Maintenance Reminder System (EMR) is incorporated into the engine controller. The engine controller records the vehicle mileage and stores it into memory every 8 miles. At that time, the engine controller checks for the 60,000, 82,500, and 120,000 mileage trip points. When the current mileage matches one of the above mentioned trip points, the EMR lamp on the instrument panel is activated.

Certain components must be replaced at the indicated mileage, or when the EMR lamp stays on with the key in the **on** position, whichever occurs first. After performing the required maintenance, the EMR lamp must be reset to turn the lamp off.

For more information, refer to Group 25 or the appropriate diagnostic manual.

FUEL INJECTORS—ENGINE CONTROLLER OUTPUT

The fuel injectors are electrical solenoids (Fig. 15). The injector contains a pintle that closes off an orifice at the nozzle end. When electric current is supplied to the injector, the armature and pintle move a short distance against a spring, allowing fuel to flow out the orifice. Because the fuel is under high pressure, a fine spray is developed in the shape of a hollow cone. The spraying action atomizes the fuel, adding it to the air entering the combustion chamber.

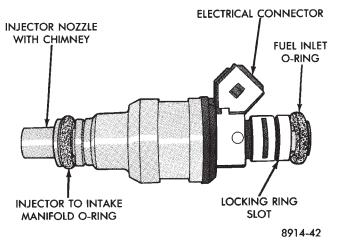


Fig. 15 Fuel Injector—3.0L Engine

The injectors are positioned in the intake manifold with the nozzle ends directly above the intake valve port (Fig. 16).

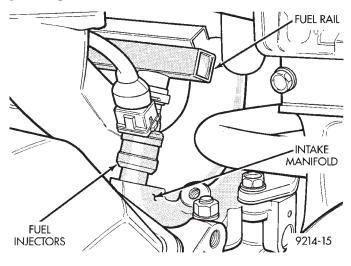
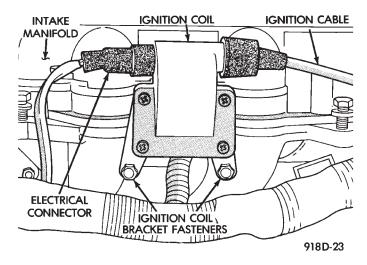


Fig. 16 Fuel Injector Location

The fuel injectors are operated by the engine controller. They are energized in a sequential order during all engine operating conditions except start up. The controller initially energizes all injectors at the same time. Once the engine controller determines crankshaft position, it begins energizing the injectors in sequence.


Battery voltage is supplied to the injectors through the ASD relay. The engine controller provides the ground path for the injectors. By switching the ground path on and off, the controller adjusts injector pulse width. Pulse width is the amount of time the injector is energized. The controller adjusts injector pulse width based on inputs it receives.

IGNITION COIL—ENGINE CONTROLLER OUTPUT

The auto shutdown (ASD) relay provides battery voltage to the ignition coil. The engine controller provides a ground contact (circuit) for energizing coil. When the controller breaks the contact, the energy in the coil primary transfers to the secondary causing the spark. The engine controller will de-energize the ASD relay if it does not receive an input from the distributor pick-up. Refer to Auto Shutdown (ASD) Relay/Fuel Pump Relay—Engine Controller Output in this section for relay operation.

The auto shutdown (ASD) relay supplies battery voltage to the positive terminal of the ignition coil. The engine controller de-energizes the ASD relay if it does not receive an input from the distributor pick-up. Refer to "Auto Shutdown (ASD) Relay—Engine Controller Output" in this section for relay operation.

The ignition coil is mounted on a bracket next to the air cleaner (Fig. 17).

Fig. 17 Ignition Coil

PART THROTTLE UNLOCK SOLENOID—ENGINE CONTROLLER OUTPUT

Three-speed automatic transaxles use a part throttle unlock solenoid. The engine controller controls the lock-up of the torque convertor through the part throttle unlock solenoid. The transmission is locked up only in direct drive mode. Refer to Group 21 for transmission information.

RADIATOR FAN RELAY—ENGINE CONTROLLER OUTPUT

The radiator fan is energized by the engine controller through the radiator fan relay. The radiator fan relay is located on the drivers side fender well near to the engine controller (Fig. 13). The engine controller grounds the radiator fan relay when engine coolant reaches a predetermined temperature or when the air conditioning system is turned on.

SPEED CONTROL SOLENOIDS—ENGINE CONTROL-LER OUTPUT

The speed control vacuum and vent solenoids are operated by the engine controller. When the engine controller supplies a ground to the vacuum solenoid, the speed control system opens the throttle plate. When the controller supplies a ground to the vent solenoid, the throttle blade closes. The engine controller balances the two solenoids to maintain the set speed. Refer to Group 8H for speed control information.

TACHOMETER—ENGINE CONTROLLER OUTPUT

The engine controller supplies engine RPM to the instrument panel tachometer through the CCD Bus. The CCD Bus is a communications port. Various modules use the CCD Bus to exchange information. Refer to Group 8E for more information.

MODES OF OPERATION

As input signals to the engine controller change, the engine controller adjusts its response to the out-

put devices. For example, the engine controller must calculate a different injector pulse width and ignition timing for idle than for wide open throttle (WOT). There are several different modes of operation that determine how the engine controller responds to the various input signals.

There are two different areas of operation, OPEN LOOP and CLOSED LOOP.

During OPEN LOOP modes the engine controller receives input signals and responds according to preset engine controller programming. Input from the oxygen (O_2) sensor is not monitored during OPEN LOOP modes.

During CLOSED LOOP modes the engine controller does monitor the oxygen (O_2) sensor input. This input indicates to the engine controller whether or not the calculated injector pulse width results in the ideal air-fuel ratio of 14.7 parts air to 1 part fuel. By monitoring the exhaust oxygen content through the O_2 sensor, the engine controller can fine tune the injector pulse width. Fine tuning injector pulse width allows the engine controller to achieve optimum fuel economy combined with low emissions.

The 3.0L sequential MPI system has the following modes of operation:

- Ignition switch ON—Zero-RPM
- Engine start-up
- Engine warm-up
- Cruise (Idle)
- Acceleration
- Deceleration
- Wide Open Throttle
- Ignition switch OFF

The engine start-up (crank), engine warm-up, and wide open throttle modes are OPEN LOOP modes. The acceleration, deceleration, and cruise modes, with the engine at operating temperature are CLOSED LOOP modes (under most operating conditions).

IGNITION SWITCH ON (ZERO RPM) MODE

When the multi-point fuel injection system is activated by the ignition switch, the following actions occur:

• The engine controller determines atmospheric air pressure from the MAP sensor input to determine basic fuel strategy.

• The engine controller monitors the coolant temperature sensor and throttle position sensor input. The engine controller modifies fuel strategy based on these inputs.

When the key is in the ON position and the engine is not running (zero rpm), the auto shutdown (ASD) relay and fuel pump relay are not energized. Therefore battery voltage is not supplied to the fuel pump, ignition coil, fuel injectors or oxygen sensor heating element.

ENGINE START-UP MODE

This is an OPEN LOOP mode. The following actions occur when the starter motor is engaged.

If the engine controller receives a distributor signal, it energizes the auto shutdown (ASD) relay and fuel pump relay. These relays supply battery voltage to the fuel pump, fuel injectors, ignition coil, and oxygen sensor heating element. If the engine controller does not receive a distributor input, the ASD relay and fuel pump relay will be de-energized after approximately one second.

The engine controller energizes all six injectors until it determines crankshaft position from the distributor pick-up signals. The controller determines crankshaft position within 2 engine revolutions.

Once crankshaft position is determined, the controller begins energizing the injectors in sequence. The controller adjusts injector pulse width and controls injector synchronization by turning the individual ground paths to the injectors On and Off.

When the engine idles within ± 64 RPM of its target RPM, the controller compares current MAP sensor value with the atmospheric pressure value received during the Ignition Switch On (zero RPM) mode. If the controller does not detect a minimum difference between the two values, it sets a MAP fault into memory.

Once the ASD and fuel pump relays have been energized, the engine controller:

• determines injector pulse width based on coolant temperature, manifold absolute pressure (MAP) and the number of engine revolutions since cranking was initiated.

• Monitors the coolant temperature sensor, distributor pick-up, MAP sensor, and throttle position sensor to determine correct ignition timing.

ENGINE WARM-UP MODE

This is a OPEN LOOP mode. The following inputs are received by the engine controller:

- coolant temperature
- crankshaft position (distributor pick-up)
- manifold absolute pressure (MAP)
- engine speed (distributor pick-up)
- throttle position
- A/C switch
- battery voltage

The controller adjusts injector pulse width and controls injector synchronization by turning the individual ground paths to the injectors On and Off.

The engine controller adjusts engine idle speed by regulating the automatic idle speed motor and ignition timing.

CRUISE OR IDLE MODE

When the engine is at operating temperature this is a CLOSED LOOP mode. During cruising speed the following inputs are received by the engine controller:

- coolant temperature
- crankshaft position (distributor pick-up)
- manifold absolute pressure
- engine speed (distributor pick-up)
- throttle position
- exhaust gas oxygen content
- A/C control positions
- battery voltage

The controller adjusts injector pulse width and controls injector synchronization by turning the individual ground paths to the injectors On and Off.

The engine controller adjusts engine idle speed and ignition timing. The engine controller controls the air/fuel ratio according to the oxygen content in the exhaust gas.

ACCELERATION MODE

This is a CLOSED LOOP mode. The engine controller recognizes an abrupt increase in throttle position or MAP pressure as a demand for increased engine output and vehicle acceleration. The engine controller increases injector pulse width in response to increased fuel demand.

DECELERATION MODE

This is a CLOSED LOOP mode. During deceleration the following inputs are received by the engine controller:

- coolant temperature
- crankshaft position (distributor pick-up)
- manifold absolute pressure
- engine speed (distributor pick-up)
- throttle position
- exhaust gas oxygen content
- A/C control positions
- battery voltage

The engine controller may receive a closed throttle input from the throttle position sensor (TPS) when it senses an abrupt decrease in manifold pressure. This indicates a hard deceleration. The engine controller may reduce injector firing to once per engine revolution. This helps maintain better control of the airfuel mixture (as sensed through the O_2 sensor).

During a deceleration condition, the engine controller grounds the exhaust gas recirculation (EGR) solenoid and the evaporative purge solenoid. When the solenoids are grounded, EGR and canister purge functions stop.

WIDE OPEN THROTTLE MODE

This is an OPEN LOOP mode. During wide-openthrottle operation, the following inputs are received by the engine controller:

- coolant temperature
- crankshaft position (distributor pick-up)
- manifold absolute pressure
- engine speed (distributor pick-up)
- throttle position

When the engine controller senses wide open throttle condition through the throttle position sensor (TPS) it will:

• Provide a ground for the electrical EGR transducer (EET) solenoid (California vehicles only). When the controller grounds the solenoid, the EGR system stops operating.

• De-energize the air conditioning relay. This disables the air conditioning system.

The exhaust gas oxygen content input is not accepted by the engine controller during wide open throttle operation. The engine controller will adjust injector pulse width to supply a predetermined amount of additional fuel.

IGNITION SWITCH OFF MODE

When the ignition switch is turned to the OFF position, the following occurs:

- All outputs are turned off.
- No inputs are monitored.
- The engine controller shuts down.

THROTTLE BODY

The throttle body assembly (Fig. 18) is located at the left end of the air intake plenum. The throttle body houses the throttle position sensor and the automatic idle speed motor. Air flow through the throttle body is controlled by a cable operated throttle blade located in the base of the throttle body.

FUEL SUPPLY CIRCUIT

Fuel is supplied to the fuel rail by an electric pump mounted in the fuel tank. The pump inlet is fitted with a filter to prevent water and other contaminants from entering the fuel supply circuit.

Fuel pressure is controlled to a preset level above intake manifold pressure by a pressure regulator. The pressure regulator is mounted on the fuel rail. The regulator uses intake manifold pressure as a reference.

FUEL PRESSURE REGULATOR

The pressure regulator is a mechanical device located on the fuel rail, downstream of the fuel injectors (Fig. 19). The regulator maintains a constant 328 kPa (47.6 psi) across the fuel injector tip.

The regulator contains a spring loaded rubber diaphragm that covers the fuel return port. When the fuel pump is operating, fuel flows past the injectors

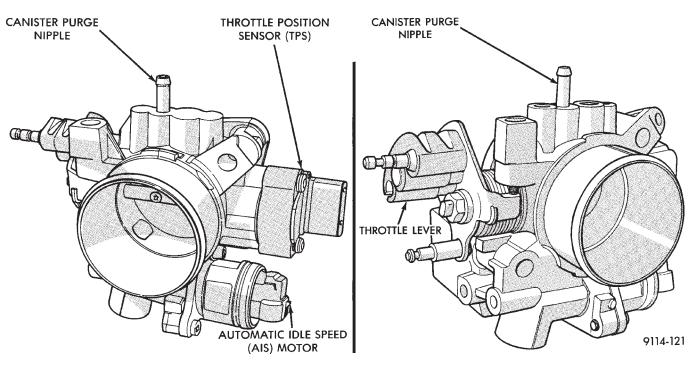


Fig. 18 Throttle Body

into the regulator, and is restricted from flowing any further by the blocked return port. When fuel pressure reaches 328 kPa (47.6 psi) it pushes on the diaphragm, compresses the spring, and uncovers the fuel return port. The diaphragm and spring constantly move from an open to closed position to keep the fuel pressure

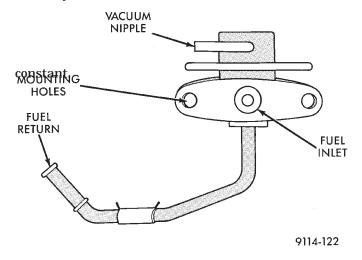


Fig. 19 Fuel Pressure Regulator

3.0L MULTI-POINT FUEL INJECTION—GENERAL DIAGNOSIS

INDEX

page

60-Way Engine Contro	oller Wiring Connector	73
Circuit Actuation Test N	Mode	72
	1	
Fuel System Diagram		64
On Board Diagnostics		67
On Dourd Diagnostios		

FUEL SYSTEM DIAGRAM

The 3.0L MPI system is managed by the engine controller. The controller receives inputs from various switches and sensors (Fig. 1). Based on these inputs, the engine controller adjusts ignition timing and idle speed through various output devices. Refer to the Multi-Point Fuel Injection—3.0L Engine section of this group for system and component descriptions.

VISUAL INSPECTION

A visual inspection for loose, disconnected, or misrouted wires and hoses should be made before attempting to diagnose or service the fuel injection system. A visual check helps save unnecessary test and diagnostic time. A thorough visual inspection will include the following checks:

State Display Test Mode	
System Tests	69
Throttle Body Minimum Air Flow Check	
Procedure	72
Visual Inspection	64

(1) Check for correct spark plug cable routing. Ensure that the cables are completely connected to the spark plugs and distributor.

(2) Check ignition coil electrical connections (Fig. 2).

(3) Verify that the electrical connector is attached to the Purge Solenoid (Fig. 3).

(4) Verify that vacuum connection at Purge Solenoid is secure and not leaking (Fig. 3).

(5) Verify that the electrical connector is attached to the MAP sensor (Fig. 4).

(6) Check MAP sensor hose at MAP Sensor Assembly (Fig. 4), and at Vacuum Connection at Intake Plenum Fitting.

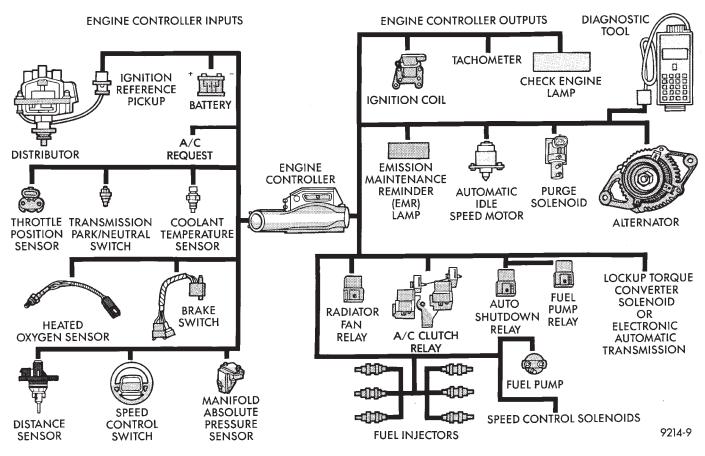
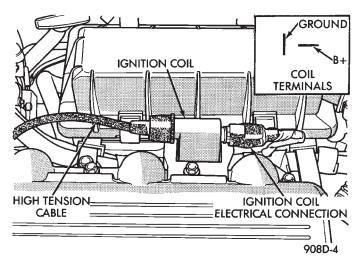



Fig. 1 Multi-Point Fuel Injection Components

*

page

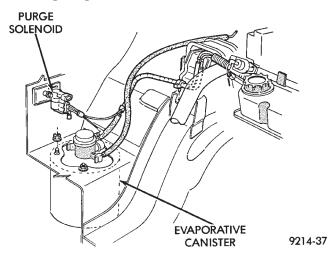


Fig. 3 Electrical Connector Canister Purge Solenoid

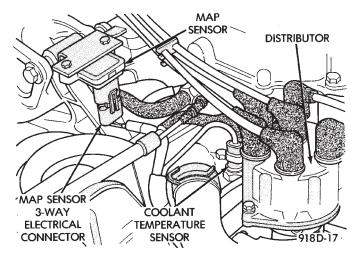


Fig. 4 Map Sensor Electrical and Vacuum Connections

(7) Check alternator wiring connections. Ensure the accessory drive belt is properly tensioned.

(8) Verify that hoses are securely attached to the vapor canister (Fig. 5).

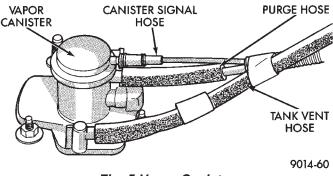
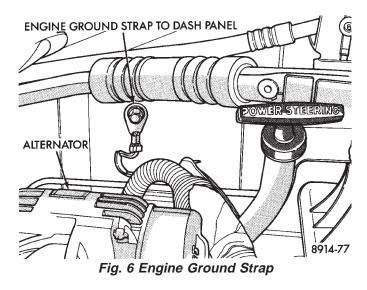



Fig. 5 Vapor Canister

(9) Verify the engine ground strap is attached at the engine and dash panel (Fig. 6 and 7).

(10) Ensure the heated oxygen sensor connector is connected to the harness connector (Fig. 7).

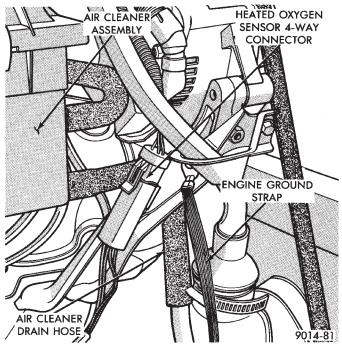


Fig. 7 Oxygen Sensor Connector

(11) Verify the distributor connector is connected to the harness connector (Fig. 8).

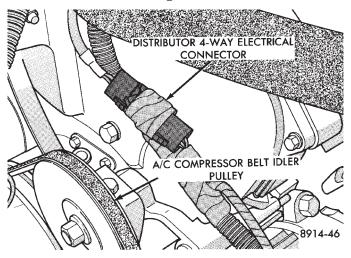


Fig. 8 Distributor Connector

(12) Verify the coolant temperature sensor connector is connected to the harness connector (Fig. 9).

(13) Check vacuum hose connection at fuel pressure regulator and intake plenum connector (Fig. 9).

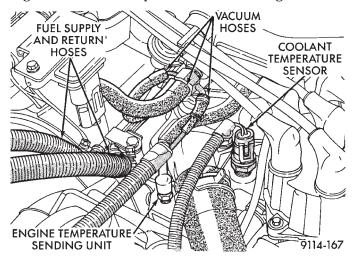


Fig. 9 Coolant Temperature Sensor Electrical Connections and Vacuum Hose Connections at the Air Intake Plenum

(14) Ensure the harness connector is securely attached to each fuel injector.

(15) Check the oil pressure sending unit electrical connection (Fig. 10).

(16) Check hose connections at throttle body (Fig. 11).

(17) Check throttle body electrical connections (Fig. 11).

(18) Check PCV hose connections (Fig. 12).

(19) If equipped, check EGR system vacuum hose connections (Fig. 13).

(20) If equipped, check EGR tube to intake plenum connections (Fig. 13).

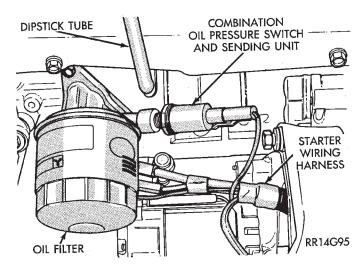


Fig. 10 Oil Pressure Sending Unit Electrical Connection

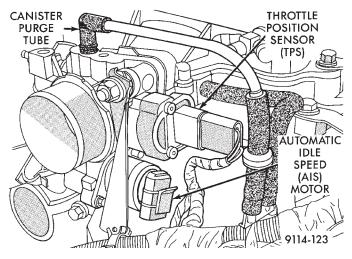
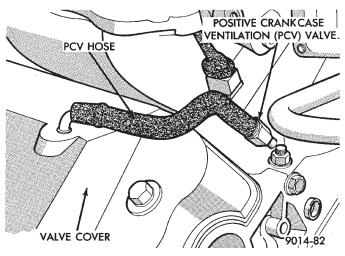



Fig. 11 Throttle Body Electrical and Vacuum Hose Connections

Fig. 12 Positive Crankcase Ventilation (PCV) System

(21) Check power brake booster and speed control connections (Figs. 14).

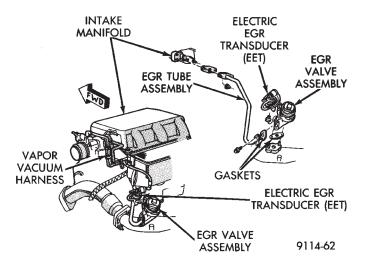


Fig. 13 EGR System Vacuum Hose Connections

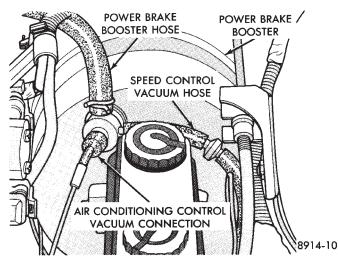


Fig. 14 Power Brake Booster and Speed Control Vacuum Hose Connections

(22) Check engine harness to main harness electrical connections.

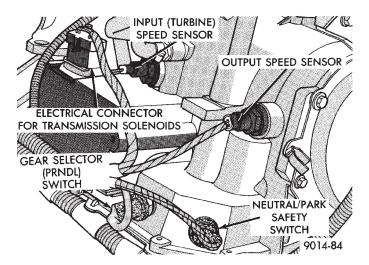
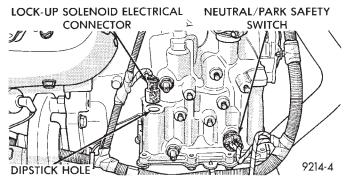



Fig. 15 Electronic Automatic Transmission Electrical Connections

(23) Check all automatic transmission electrical connections (Fig. 15 or 16).

Fig. 16 Automatic Transmission Electrical Connections

(24) Check the vehicle distance sensor electrical connection (Fig. 17).

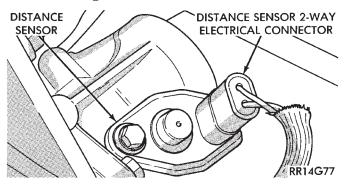
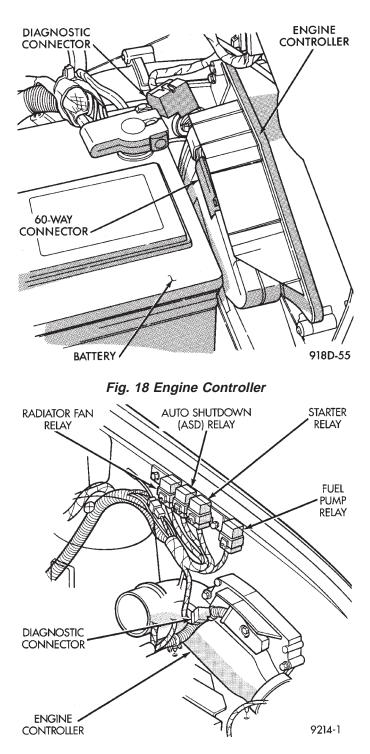


Fig. 17 Distance Sensor Electrical Connector

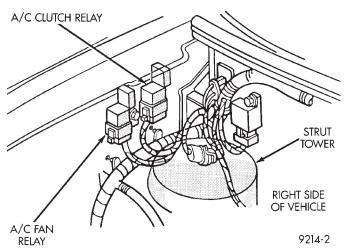
(25) Inspect the engine controller 60-way electrical connector for damage or spread terminals. Verify the 60-way connector is fully inserted into the socket of the engine controller (Fig. 18). Ensure that wires are not stretched or pulled out of the connector.

(26) Verify that all electrical connectors are fully inserted into relays (Fig. 19 and Fig. 20).


(27) Check Battery Cable Connections.

(28) Check hose and wiring connections at fuel pump. Check that wiring connector is making contact with terminals on pump.

ON BOARD DIAGNOSTICS


The engine controller has been programmed to monitor many different circuits of the fuel injection system. If a problem is sensed with a monitored circuit often enough to indicate an actual problem, the controller stores a fault. If the problem is repaired or ceases to exist, the engine controller cancels the Fault Code after 51 vehicle key on/off cycles.

Certain criteria must be met for a fault code to be entered into engine controller memory. The criteria may be a specific range of engine RPM, engine temperature, and/or input voltage to the engine controller.

Fig. 19 ASD, Fuel Pump, Radiator Fan and Starter Relays

It is possible that a fault code for a monitored circuit may not be entered into memory even though a malfunction has occurred. This may happen because one of the fault code criteria for the circuit has not been met. **For example**, assume that one of the fault code criteria for the MAP sensor circuit is that the engine must be operating between 750 and 2000 RPM to be monitored for a fault code. If the MAP sensor output circuit shorts to ground when engine RPM is above

Fig. 20 A/C Clutch and A/C Fan Relays

2400 RPM (resulting in a 0 volt input to the engine controller) a fault code will not be entered into memory. This is because the condition does not occur within the specified RPM range.

There are several operating conditions that the engine controller does not monitor and set fault codes for. Refer to Monitored Circuits and Non-Monitored Circuits in this section.

Stored fault codes can be displayed either by cycling the ignition key On - Off - On - Off - On, or through use of the Diagnostic Readout Box II (DRB II). The DRB II connects to the diagnostic connector in the vehicle (Fig. 18).

MONITORED CIRCUITS

The engine controller can detect certain fault conditions in the fuel injection system.

Open or Shorted Circuit - The engine controller can determine if the sensor output (input to controller) is within proper range. Also, the controller can determine if the circuit is open or shorted.

Output Device Current Flow - The engine controller senses whether the output devices are hooked up. If there is a problem with the circuit, the controller senses whether the circuit is open, shorted to ground, or shorted high.

Oxygen Sensor - The engine controller can determine if the oxygen sensor is switching between rich and lean once the system has entered closed loop. Refer to Modes of Operation in this section for an explanation of closed loop operation.

NON-MONITORED CIRCUITS

The engine controller does not monitor the following circuits, systems and conditions that could have malfunctions that result in driveability problems. Fault codes may not be displayed for these conditions. However, problems with these systems may cause fault codes to be displayed for other systems.

For example, a fuel pressure problem will not register a fault directly, but could cause a rich or lean condition. This could cause an oxygen sensor fault to be stored in the engine controller.

Fuel Pressure - Fuel pressure is controlled by the vacuum assisted fuel pressure regulator. The engine controller cannot detect a clogged fuel pump inlet filter, clogged in-line fuel filter, or a pinched fuel supply or return line. However, these could result in a rich or lean condition causing an oxygen sensor fault to be stored in the engine controller.

Secondary Ignition Circuit - The engine controller cannot detect an inoperative ignition coil, fouled or worn spark plugs, ignition cross firing, or open spark plug cables.

Engine Timing - The engine controller cannot detect an incorrectly indexed timing chain, camshaft sprocket and crankshaft sprocket. The engine controller also cannot detect an incorrectly indexed distributor. However, these could result in a rich or lean condition causing an oxygen sensor fault to be stored in the engine controller.

Cylinder Compression - The engine controller cannot detect uneven, low, or high engine cylinder compression.

Exhaust System - The engine controller cannot detect a plugged, restricted or leaking exhaust system.

Fuel Injector Malfunctions - The engine controller cannot determine if the fuel injector is clogged, the pintle is sticking or the wrong injector is installed. However, these could result in a rich or lean condition causing an oxygen sensor fault to be stored in the engine controller.

Excessive Oil Consumption - Although the engine controller monitors exhaust stream oxygen content when the system is in closed loop, it cannot determine excessive oil consumption.

Throttle Body Air Flow - The engine controller cannot detect a clogged or restricted air cleaner inlet or filter element.

Evaporative System - The engine controller will not detect a restricted, plugged or loaded evaporative purge canister.

Vacuum Assist - Leaks or restrictions in the vacuum circuits of vacuum assisted engine control system devices are not monitored by the engine controller. However, these could result in a MAP sensor fault being stored in the engine controller.

Engine Controller System Ground - The engine controller cannot determine a poor system ground. However, a fault code may be generated as a result of this condition.

Engine Controller Connector Engagement - The engine controller cannot determine spread or damaged connector pins. However, a fault code may be generated as a result of this condition.

HIGH AND LOW LIMITS

The engine controller compares input signal voltages from each input device with established high and low limits that are programmed into it for that device. If the input voltage is not within specifications, and other fault code criteria are met, a fault code will be stored in memory. (Other fault code criteria might include engine RPM limits or input voltages from other sensors or switches that must be present before a fault condition can be verified).

FAULT CODE DESCRIPTION

When a fault code appears, it indicates that the Engine Controller has recognized an abnormal condition in the system. Fault codes can be obtained from the Check Engine lamp on the Instrument Panel or from the Diagnostic Readout Box II (DRBII). Fault codes indicate the results of a failure but do not identify the failed component directly.

SYSTEM TESTS

Apply parking brake and/or block wheels before performing idle check or adjustment, or any engine running tests.

OBTAINING FAULT CODES

(1) Connect DRBII to the diagnostic connector located in the engine compartment near the engine controller.

(2) Start the engine if possible, cycle the transmission selector and the A/C switch if applicable. Shut off the engine.

(3) Turn the ignition switch on, access Read Fault Screen. Record all the fault messages shown on the DRBII. Observe the check engine lamp on the instrument panel. The lamp should light for 3 seconds then go out (bulb check).

Fault code erasure; access erase fault code data

14 - 70 FUEL SYSTEM -

FAULT CODE DESCRIPTION

ault Code	DRB ll Display	Description
11	No reference Signal During Cranking	No distributor reference signal detected during engine cranking.
13+**	No change in MAP from start to run	No difference recognized between the engine MAP reading and the barometric (atmospheric) pressure reading at start-up.
14+**	MAP voltage too low	MAP sensor input below minimum acceptable voltage.
	MAP voltage too High	MAP sensor input above maximum acceptable voltage.
15**	No vehicle speed signal	No vehicle distance (speed) sensor signal detected during road load conditions.
17	Engine is cold too long	Engine coolant temperature remains below normal operating temperatures during vehicle travel (thermostat).
21**	O ₂ signal stays at center	Neither rich or lean condition detected from the oxygen sensor input.
	or O2 signal shorted to voltage	Oxygen sensor input voltage maintained above the normal operating range.
22+**	Coolant sensor voltage too high	Coolant temperature sensor input above the maximum acceptable voltage.
	or Coolant sensor voltage too low	Coolant temperature sensor input below the minimum acceptable voltage.
24+**	Throttle position sensor voltage high	Throttle position sensor input above the maximum acceptable voltage.
	or Throttle position sensor voltage low	Throttle position sensor input below the minimum acceptable voltage.
25**	Automatic idle speed motor circuits	A shorted condition detected in one or more of the AIS control circuits.
27	Injector control circuit (DRB II)	Injector output driver does not respond properly to the control signal (DRB II specifies the injector by cylinder number).
31**	Purge solenoid circuit	An open or shorted condition detected in the purge solenoid circuit.
33	A/C clutch relay circuit	An open or shorted condition detected in the A/C clutch relay circuit.
34	Speed control solenoid circuits	An open or shorted condition detected in the speed control vacuum or vent solenoid circuits.

+ Check Engine Lamp On ** Check Engine Lamp On (California Only)

Fault Code	DRB II Display	Description
35	Radiator fan relay circuits	An open or shorted condition detected in the radiator fan circuit
37	Torque convertor unlock solenoid CKT	An open or shorted condition detected in the torque convertor part throttle unlock solenoid circuit (automatic transmission).
41+**	Alternator field not switching properly	An open or shorted condition detected in the alternator field control circuit.
42	Auto shutdown relay control circuit	An open or shorted condition detected in the auto shutdown relay circuit.
44	Battery temp voltage	An open or shorted condition exists in the coolant temperature sensor circuit or a problem exists in the engine controller's battery temperature voltage circuit.
46+**	Charging system voltage too high	Battery voltage sense input above target charging voltage during engine operation.
47+**	Charging system voltage too low	Battery voltage sense input below target charging during engine operation. Also, no significant change detected in battery voltage during active test of alternator output.
51**	O ₂ signal stays below center (lean)	Oxygen sensor signal input indicates lean air/fuel ratio condition during engine operation.
52**	O ₂ signal stays above center (rich)	Oxygen sensor signal input indicates rich air/fuel ratio condition during engine operation.
53	Internal controller	Engine controller internal fault condition detected.
54+**	No sync Pick-up signal	No fuel sync signal detected during engine rotation.
62	Controller Failure EMR miles not stored	Unsuccessful attempt to update EMR mileage in the controller EEPROM.
63	Controller Failure EEPROM write denied	Unsuccessful attempt to write to an EEPROM location by the engine controller.
55	N/A	Completion of fault code display on Check Engine lamp.
+ Check Engine Lamp On		

** Check Engine Lamp On (California Only)

STATE DISPLAY TEST MODE

The switch inputs used by the engine controller have only two recognized states, HIGH and LOW. For this reason, the engine controller cannot recognize the difference between a selected switch position versus an open circuit, a short circuit, or a defective switch. If the change is displayed, it can be assumed that the entire switch circuit to the engine controller is functional. From the state display screen access either State Display Inputs and Outputs or State Display Sensors.

STATE DISPLAY INPUTS AND OUTPUTS

Connect the DRB II tester to the vehicle. Access the State Display screen. Then access Inputs and Outputs. The following is a list of the engine control system functions accessible through the Inputs and Outputs screen.

9214-47

Park/Neutral Switch **Speed Control Resume Brake Switch** Speed Control On/Off Speed Control Set A/C Switch Sense Z2 Voltage Sense S/C Vent Solenoid S/C Vacuum Solenoid A/C Clutch Relay **EMR Lamp** EGR Solenoid Auto Shutdown Relay **Radiator Fan Relay Purge Solenoid PTU Solenoid Check Engine Lamp**

STATE DISPLAY SENSORS

Connect the DRB II tester to the vehicle and access the State Display screen. Then access Sensor Display. The following is a list of the engine control system functions accessible through the Sensor Display screen:

Battery Temp Sensor Oxygen Sensor Signal Coolant Temperature Coolant Temp Sensor Throttle Position Minimum Throttle **Battery Voltage MAP Sensor Reading AIS Motor Position Adaptive Fuel Factor Barometric Pressure** Min Airflow Idle Speed **Engine Speed** Fault #1 Key-On Info Module Spark Advance **Speed Control Target** Fault #2 Key-on Info Fault #3 Key-on Info **Speed Control Status** Speed Control Switch Voltage Charging System Goal **Theft Alarm Status** Map Sensor Voltage Vehicle Speed **Oxygen Sensor State** MAP Gauge Reading **Throttle Opening Total Spark Advance**

CIRCUIT ACTUATION TEST MODE

The circuit actuation test mode checks for proper operation of output circuits or devices which the engine controller cannot internally recognize. The engine controller can attempt to activate these outputs and allow an observer to verify proper operation. Most of the tests provide an audible or visual indication of device operation (click of relay contacts, spray fuel, etc.). Except for intermittent conditions, if a device functions properly during testing, assume the device, its associated wiring, and driver circuit working correctly.

OBTAINING CIRCUIT ACTUATION TEST

Connect the DRB II tester to the vehicle and access the Actuators screen. The following is a list of the engine control system functions accessible through Actuators screens:

Stop All Tests Ignition Coil #1 Fuel Injector #1 Fuel Injector #2 Fuel Injector #3 Fuel Injector #4 Fuel Injector #5 Fuel Injector #6 AIS Motor Open/Close **Radiator Fan Relay** A/C Clutch Relay Auto Shutdown Relay **Fuel Pump Relay Purge Solenoid** S/C Serv Solenoids Alternator Field All Solenoids/Relays ASD Fuel System Test

THROTTLE BODY MINIMUM AIR FLOW CHECK PROCEDURE

(1) Warm engine in Park or Neutral until the cooling fan has cycled on and off at least once.

(2) Ensure that all accessories are off.

(3) Hook-up the timing check device and tachometer.

(4) Disconnect the coolant temperature sensor and

set basic timing to 12° BTDC $\pm 2^{\circ}$ BTDC.

(5) Shut off engine. Reconnect coolant temperature sensor wire.

(6) Disconnect the PCV valve hose from the PCV valve (Fig. 21).

(7) Plug the PCV valve nipple.

(8) Disconnect the idle purge hose from the engine vacuum harness tee (Fig. 22).

(9) Install Air Metering Fitting #6457 (0.125 inch orifice) in the intake manifold mounted idle purge hose (Fig. 23).

(10) Connect Diagnostic Readout Box II (DRB II).

(11) Restart the engine, allow engine to idle for at least one minute.

(12) Using the DRBII, access Min. Airflow Idle Speed.

(13) The following will then occur:

• AIS motor will fully close.

★

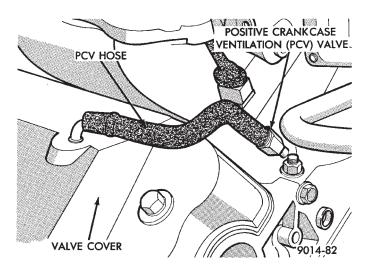


Fig. 21 3.0L PCV Valve

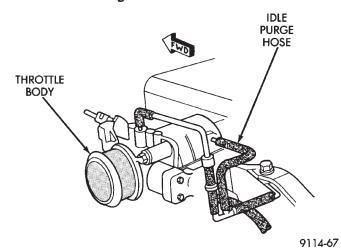
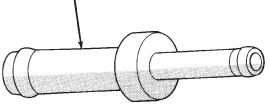



Fig. 22 3.0L Idle Purge Hose

SPECIAL TOOL 6457

9114-68

Fig. 23 Air Metering Fitting 6457

• Idle spark advance will become fixed.

• Engine RPM will be displayed on Diagnostic Readout Box II (DRB II)

(14) Check idle RPM with tachometer, if idle RPM is within the below specification then the throttle body min. air flow is set correctly.

(15) If idle RPM is not within specifications, shut off the engine and clean the throttle body as follows:

IDLE SPECIFICATIONS

Odometer Reading	Idle RPM
Below 1000 Miles	625-950 RPM
Above 1000 Miles	750-950 RPM
	9114-69

(a) Remove the throttle body from engine.

WARNING: CLEAN THROTTLE BODY IN A WELL VENTILATED AREA. WEAR RUBBER OF BUTYL GLOVES, DO NOT LET MOPAR PARTS CLEANER COME IN CONTACT WITH EYES OR SKIN. AVOID INGESTING THE CLEANER. WASH THOROUGHLY AFTER USING CLEANER.

(b) While holding the throttle open, spray the entire throttle body bore and the manifold side of the throttle plate with Mopar Parts Cleaner. **Only use Mopar Parts Cleaner to clean the throttle body**.

(c) Using a soft scuff pad, clean the top and bottom of throttle body bore and the edges and manifold side of the throttle blade. The edges of the throttle blade and portions of the throttle bore that are closest to the throttle blade when is closed, must be free of deposits.

(d) Use compressed air to dry the throttle body.

(e) Inspect throttle body for foreign material.

(f) Install throttle body on manifold.

(g) Repeat steps 1 through 14. If the minimum air flow is still not within specifications, the problem is not caused by the throttle body.

(16) Shut off engine.

(17) Remove Air Metering Fitting #6457 from the intake manifold idle purge hose. Reconnect the hose to the engine vacuum harness tee.

(18) Remove the plug from the PCV valve. Reconnect the PCV valve hose to the PCV valve.

(19) Disconnect the DRB II.

IGNITION TIMING PROCEDURE

Refer to Group 8D Ignition System.

60-WAY ENGINE CONTROLLER WIRING CONNEC-TOR

Refer to the engine controller wiring connector diagram (Fig. 24) for information regarding wire colors and cavity numbers.

DESCRIPTION CAW CWR MAP SENSOR 3 CWR NHECTOR DRIVER #5 COOLANT SENSOR 3 CWR AIS STEPRE DRIVE SENSOR RETURN SENSOR RETURN 3 CWR AIS STEPRE DRIVE SENSOR RETURN SENSOR RETURN 3 CWR AIS STEPRE DRIVE SENSOR RETURN SENSOR RETURN 3 CWR AIS STEPRE DRIVE SENSOR RETURN SENSOR RETURN 3 CWR AIS STEPRE DRIVE SENSOR RETURN SENSOR AIR RC AIS STEPRE DRIVE AI SUCT OUTURT (DSTRRUTOR PORCE BR/VT AIS STEPRE DRIVE AI MITB/K CCD BIS ART RC AVOLT OUTURT (DSTRRUTOR PORCE BR/VT MITB/K CCD BIS ART RC AIR RC/DG AIR RC/DG

14 - 74 FUEL SYSTEM -

★

page

3.0L MULTI-POINT FUEL INJECTION—SERVICE PROCEDURES

INDEX

page

Automatic Idle Speed (AIS) Motor	76
Canister Purge Solenoid Service	80
Engine Controller	80
Fuel Injector Rail Assembly	77
Fuel Injector Rail Assembly	
Fuel Injectors	79
Fuel Pressure Regulator Service	78

THROTTLE BODY SERVICE

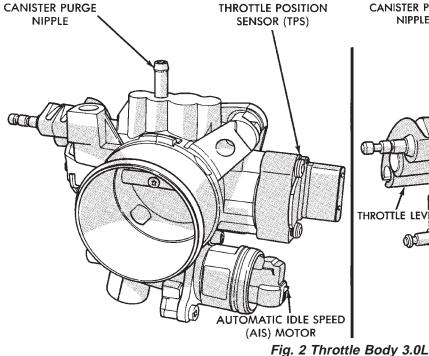
(1) Disconnect negative battery cable.

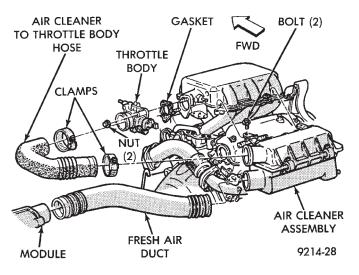
(2) Remove air cleaner hose clamp to throttle body and remove hose. (Fig. 1)

(3) Remove throttle cable and transaxle linkage.

(4) Disconnect automatic idle speed (AIS) motor and throttle position sensor (TPS) wiring connectors.

(5) Disconnect vacuum hoses from throttle body.


(6) Remove throttle body to intake manifold attaching nuts. Remove engine harness wiring bracket.


(7) Remove throttle body and gasket.

(8) Reverse the above procedures for installation. Tighten throttle body mounting nuts to 25.4 Nom (225 in. lbs.) torque.

THROTTLE BODY

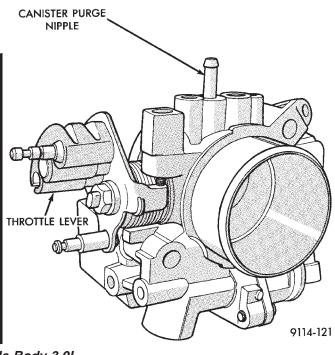

When servicing body components, always assemble components with new O-rings and seals where applicable (Fig. 2). Never use lubricants on O-rings or seals, damage may result. If assembly of component is diffi-

Fig. 1 Throttle Body Assembly

cult, use water to aid assembly. Use care when removing hoses to prevent damage to hose or hose nipple.

★

FUEL SYSTEM PRESSURE RELEASE PROCEDURE

The 3.0L MPI fuel system is under a constant pressure of approximately 330 kPa (48 psi). Before servicing the fuel pump, fuel lines, fuel filter, throttle body or fuel injectors, the fuel system pressure must be released.

(1) Loosen fuel filler cap to release fuel tank pressure.

(2) Disconnect injector wiring harness from engine harness (Fig. 3).

(3) Connect a jumper wire between terminal Number 1 of one injector harness and engine ground.

(4) Connect a jumper wire to the positive terminal Number 2 of the injector harness and touch the battery positive post for no longer than 5 seconds. This releases system pressure.

- (5) Remove jumper wires.
- (6) Continue fuel system service.

Fig. 3 Injector Harness Connector

THROTTLE POSITION SENSOR

REMOVAL

(1) Disconnect negative cable from battery.

(2) Remove electrical connector from throttle position sensor.

(3) Remove throttle position sensor mounting screws (Fig. 4).

(4) Lift throttle position sensor off throttle shaft.

INSTALLATION

(1) Install throttle position sensor on throttle shaft. Install mounting screws. Tighten screw to 2 Nom (17 in. lbs.) torque.

(2) Connect electrical connector to throttle position sensor.

(3) Connect negative cable to battery.

AUTOMATIC IDLE SPEED (AIS) MOTOR

REMOVAL

(1) Disconnect negative cable from battery.

(2) Remove electrical connector from automatic idle speed (AIS) motor.

(3) Remove AIS motor mounting screws (Fig. 5).

(4) Remove AIS motor from throttle body. Ensure the O-ring is removed with the AIS motor.

INSTALLATION

(1) The new AIS motor has a new O-ring installed on it. If pintle measures more than 1 inch (25 mm) it must

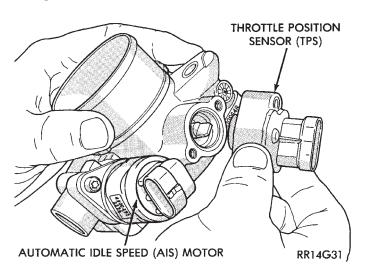


Fig. 4 Servicing Throttle Position Sensor

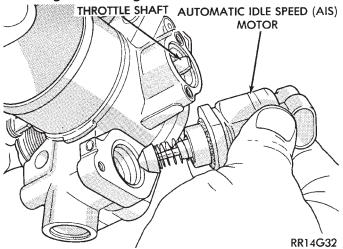


Fig. 5 Servicing Automatic Idle Speed Motor

be retracted. Use the DRB II AIS Motor Open/Close Test to retract the pintle (battery must be connected.)

(2) Carefully place AIS motor into throttle body.

(3) Install mounting screws. Tighten screws to 2 Nom (17 in. lbs.) torque.

- (4) Connect electrical connector to AIS motor.
- (5) Connect negative cable to battery.

FUEL INJECTOR RAIL ASSEMBLY

REMOVAL

WARNING: THE 3.0L MPI FUEL SYSTEM IS UNDER A CONSTANT PRESSURE OF APPROXIMATELY 330 KPA (48 PSI). PERFORM FUEL PRESSURE RELEASE PROCEDURE BEFORE SERVICING THE FUEL RAIL OR FUEL INJECTORS.

- (1) Perform the Fuel Pressure Release Procedure.
- (2) Disconnect negative cable from battery.
- (3) Remove air cleaner to throttle body hose.
- (4) Remove throttle cable (Fig. 6).

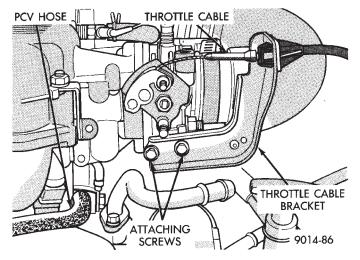


Fig. 6 Throttle Cable Attachment

(5) Disconnect electrical connectors from the automatic idle speed (AIS) motor and throttle position sensor (TPS).

(6) Remove vacuum hose harness from throttle body (Fig. 7).

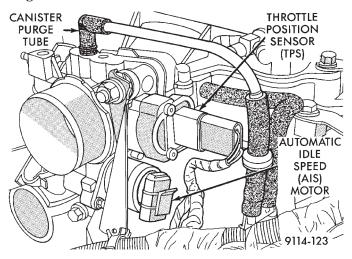


Fig. 7 Electrical and Vacuum Connection to Throttle Body

(7) Remove electrical connector from the coolant temperature sensor (Fig. 8).

- (8) Remove vacuum connections from air intake plenum vacuum connector (Fig. 8).
 - (9) Remove fuel hoses from fuel rail (Fig. 8).

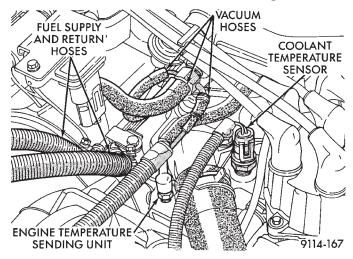


Fig. 8 Coolant Temperature Sensor Electrical Connections

(10) Remove air intake plenum to intake manifold mounting fasteners (Fig. 9).

(11) Remove ignition coil.

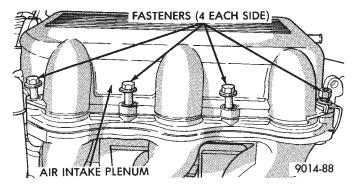


Fig. 9 Air Intake Plenum to Intake Manifold Attaching Fasteners

(12) Remove air intake plenum (Fig. 10).

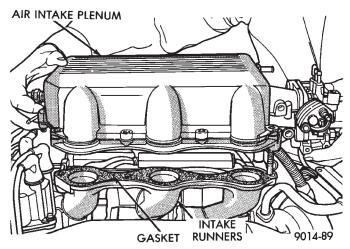


Fig. 10 Removing Air Intake Plenum

(13) Cover intake manifold while servicing injector fuel rail (Fig. 11).

(14) Remove vacuum hoses from fuel rail (Fig. 11).

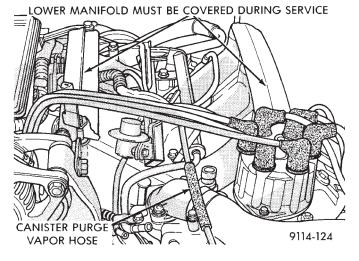
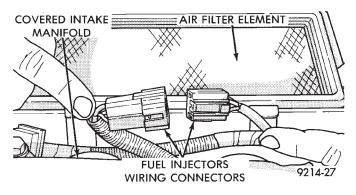



Fig. 11 Vacuum Connections at the Fuel Rail

(15) Disconnect fuel injector wiring harness from engine wiring harness (Fig. 12).

CAUTION: Do not damage the injector O-Rings when removing the injectors and fuel rail assembly.

(16) Remove fuel rail mounting bolts. Lift fuel rail assembly off of intake manifold.

FUEL INJECTOR RAIL ASSEMBLY

INSTALLATION

(1) Ensure injectors are seated into the receiver cup of fuel rail with lock ring in place.

(2) Make sure the injector holes in the manifold are clean.

(3) To ease installation, lubricate injector O-ring with a drop of clean engine oil.

(4) Put the tip of each injector into their ports. Push the assembly into place until the injectors are seated in the ports.

(5) Install fuel rail attaching bolts. Tighten bolts to 13 Nom (115 in. lbs.) torque.

(6) Install fuel supply and return tube holddown bolt and the vacuum crossover tube holddown bolt. Tighten bolts to 10 Nom (95 in. lbs.) torque.

(7) Connect fuel injector wiring harness to engine wiring harness.

(8) Connect vacuum harness to fuel rail assembly.

(9) Remove covering from lower intake manifold and clean surface.

(10) Place intake manifold gaskets **with beaded sealer up** on lower manifold. Put air intake in place. Install ignition coil. Install attaching fasteners and tighten to 13 Nom (115 in. lbs.) torque.

(11) Connect fuel lines to fuel rail. Tighten hose clamps to 1 Nom (10 in. lbs.) torque.

(12) Connect vacuum harness to air intake plenum and fuel pressure regulator.

(13) Connect coolant temperature sensor electrical connector to sensor.

(14) Connect PCV and brake booster supply hose to intake plenum.

(15) Connect automatic idle speed (AIS) motor and throttle position sensor (TPS) electrical connectors.

- (16) Connect vacuum vapor harness to throttle body.
- (17) Install throttle cable.
- (18) Install air inlet hose assembly.
- (19) Connect negative cable to battery.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

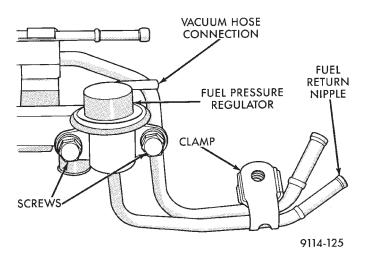
(20) With the ignition key in ON position, access the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

FUEL PRESSURE REGULATOR SERVICE

REMOVAL

WARNING: THE 3.0L MPI FUEL SYSTEM IS UNDER A CONSTANT PRESSURE OF APPROXIMATELY 330 KPA (48 PSI). PERFORM FUEL PRESSURE RELEASE PROCEDURE BEFORE SERVICING THE FUEL PRES-SURE REGULATOR.

(1) Perform the Fuel Pressure Release Procedure.


(2) Disconnect negative cable from battery.

(3) Loosen fuel return hose clamp and remove fuel return hose from nipple.

(4) Remove vacuum hose from fuel pressure regulator. (Fig. 13)

(5) Remove screw holding fuel return tube to the intake manifold.

(6) Remove fuel pressure regulator screws. Remove fuel pressure regulator from engine.

Fig. 13 Fuel Pressure Regulator

INSTALLATION

(1) Lubricate O-ring on fuel pressure regulator with clean 30 weight engine oil.

(2) Install fuel pressure regulator into fuel rail. Tighten screws to 10 Nom (90 in. lbs.) torque.

(3) Install screw holding fuel return tube clamp in place. Tighten screw to 10 Nom (95 in. lbs.) torque.

(4) Connect vacuum hose to fuel pressure regulator.

(5) Connect fuel return hose to fuel return tube.

Tighten hose clamp to 1 Nom (10 in. lbs.) torque.

(6) Connect negative battery cable.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

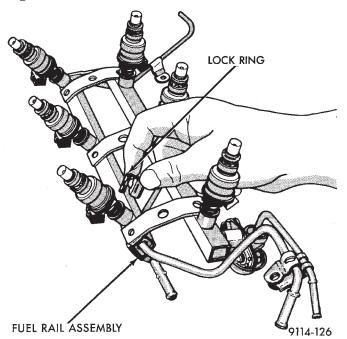
(7) With the ignition key in ON position, access the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

FUEL INJECTORS

WARNING: THE 3.0L MPI FUEL SYSTEM IS UNDER A CONSTANT PRESSURE OF APPROXIMATELY 330 KPA (48 PSI). PERFORM FUEL PRESSURE RELEASE PROCEDURE BEFORE SERVICING THE FUEL INJEC-TORS.

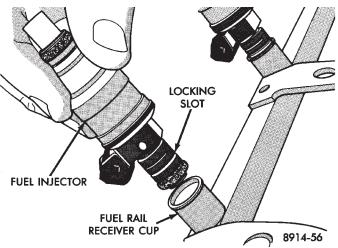
REMOVAL

(1) Perform the Fuel Pressure Release Procedure.


(2) Disconnect negative cable from battery.

The fuel rail must be removed first to service the injectors. Refer to Fuel Injector Rail Assembly Removal in this section.

(3) Label each injector connector with its cylinder number. Disconnect electrical connector from injector.


(4) Position fuel rail assembly so that the fuel injectors are easily accessible.

(5) Remove injector clip from fuel rail and injector (Fig. 14).

Fig. 14 Fuel Injector and Rail

(6) Pull injector straight out of fuel rail receiver cup (Fig. 15).

Fig. 15 Servicing Fuel Injector

(7) Check injector O-ring for damage. If O-ring is damaged, it must be replaced. If injector is to be reused, a protective cap must be installed on the injector tip to prevent damage.

(8) Repeat procedure for remaining injectors.

INSTALLATION

(1) Before installing an injector, the rubber O-ring must be lubricated with a drop of clean engine oil to aid in installation.

★

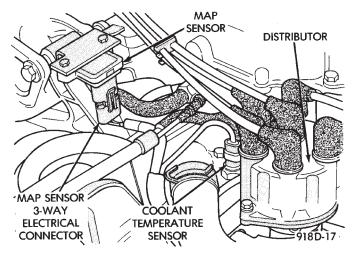
(2) Being careful not to damage O-ring, install injector nozzle end into fuel rail receiver cap (Fig. 15).

(3) Install injector clip by sliding open end into **top slot** of the injector. The edge of the receiver cup will slide into the side slots of clip (Fig. 15).

(4) Repeat steps for remaining injectors.

(5) Install fuel rail assembly. Refer to Fuel Rail Assembly Installation in this section.

(6) Connect electrical connectors to injectors in correct order.


(7) Connect negative battery cable.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(8) With the ignition key in ON position, access the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR

(1) Remove vacuum hose and mounting screws from manifold absolute pressure (MAP) sensor (Fig. 16).

(2) Disconnect electrical connector from sensor. Remove sensor.

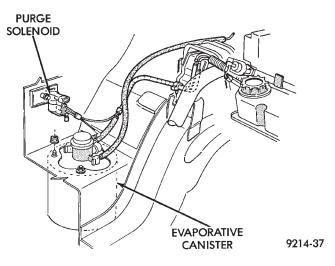
(3) Reverse the above procedure for installation.

CANISTER PURGE SOLENOID SERVICE

(1) Remove vacuum hose and electrical connector from solenoid (Fig. 17).

(2) Depress tab on top of solenoid and slide the solenoid downward out of mounting bracket.

(3) Reverse above procedure to install.


ENGINE CONTROLLER

(1) Remove air cleaner duct from engine controller.

(2) Disconnect negative cable from battery. Discon-

nect positive cable from battery.

(3) Remove battery holddown. Remove battery.

Fig. 17 Canister Purge Solenoid

(4) Remove engine controller mounting screws (Fig. 18).

(5) Remove the electrical connector from engine controller. Remove engine controller.

(6) Reverse the above procedure for installation.

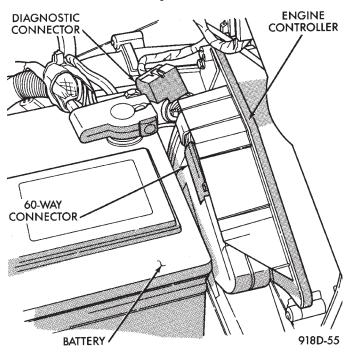


Fig. 18 Engine Controller

HEATED OXYGEN SENSOR (0₂ SENSOR)

The oxygen sensor is installed in the exhaust manifold (Fig. 19).

CAUTION: Do not pull on the oxygen sensor wires when disconnecting the electrical connector.

 \star

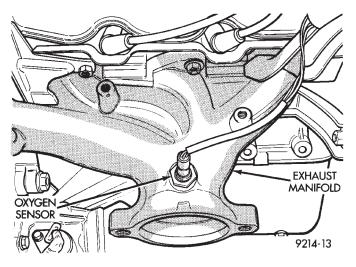
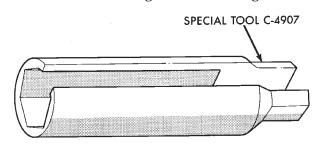



Fig. 19 Heated Oxygen Sensor

WARNING: THE EXHAUST MANIFOLD MAY BE EX-TREMELY HOT. USE CARE WHEN SERVICING THE **OXYGEN SENSOR.**

(1) Disconnect oxygen sensor electrical connector.

(2) Remove sensor using Tool C-4907 (Fig. 20).

9114-106

page

Fig. 20 Oxygen Sensor Socket

When the sensor is removed, the exhaust manifold threads must be cleaned with an 18 mm X 1.5 + 6E tap. If using original sensor, coat the threads with Loctite 771-64 anti-seize compound or equivalent. New sensors are packaged with compound on the threads and no additional compound is required. The sensor must be tightened to 27 Nom (20 ft. lbs.) torque.

3.3L MULTI-POINT FUEL INJECTION—SYSTEM OPERATION

INDEX

page

Air Conditioning (A/C) Clutch Relay—Engine
Controller Output 87
Air Conditioning Switch Sense—Engine
Controller Input
Alternator Field—Engine Controller Output 87
Auto Shutdown (ASD) Relay and Fuel Pump
Relay—Engine Controller Output 88
Automatic Idle Speed (AIS) Motor—Engine
Controller Output
Battery Voltage—Engine Controller Input
Brake Switch—Engine Controller Input
Camshaft Sensor—Engine Controller Input 84
Canister Purge Solenoid—Engine Controller
Output
Ccd Bus
Check Engine Lamp—Engine Controller Output 89
Coolant Temperature Sensor—Engine
Controller Input
Crankshaft Sensor—Engine Controller Input
Diagnostic Connector—Engine Controller Output 89
Electronic Automatic Transaxle Controller—Engine Con-
troller Output
Emission Maintenance Reminder (EMR)
Lamp—Engine Controller Output
Engine Controller82

GENERAL INFORMATION

The 3.3L engine uses a sequential Multi-point Electronic Fuel Injection system (Fig. 1). The MPI system is computer regulated and provides precise air/fuel ratios for all driving conditions.

Engine Controller Reprogramming (Flash)Fuel Injectors and Fuel Rail AssemblyFuel Injectors—Engine Controller OutputFuel Pressure Regulator	92 89
Fuel Supply Circuit	92
General Information	
Ignition Coil—Engine Controller Output Manifold Absolute Pressure (MAP) Sensor—Engine	90
Controller Input	85
Modes of Operation	
Oxygen Sensor (O ₂ Sensor)—Engine Controller	00
	80
Radiator Fan Relay—Engine Controller Output Speed Control Solenoids—Engine Controller	90
	90
Speed Control—Engine Controller Input	86
Tachometer—Engine Controller Output	90
Throttle Body	92
Throttle Position Sensor (TPS)—Engine	
Controller Input	86
Transmission Park/Neutral Switch—Engine	
Controller Input	86
Vehicle Distance (Speed) Sensor—Engine	07
Controller Input	87

The MPI system is operated by the Single Board Engine Controller II (SBEC II), referred to in this manual as the engine controller.

The engine controller regulates ignition timing, airfuel ratio, emission control devices, cooling fan, charging system, idle speed and speed control.

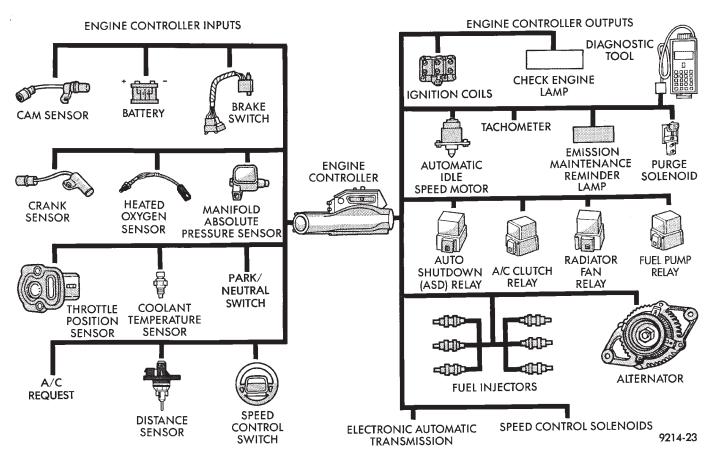


Fig. 1 Multi-Point Fuel Injection Components

Various sensors provide the inputs necessary for the engine controller to correctly operate these systems. In addition to the sensors, various switches also provide inputs to the engine controller.

All inputs to the engine controller are converted into signals. The engine controller can adapt its programming to meet changing operating conditions.

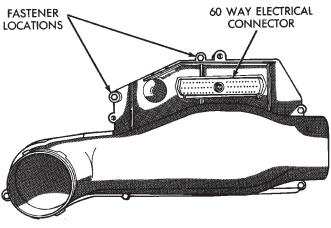
Fuel is injected into the intake port above the intake valve in precise metered amounts through electrically operated injectors. The engine controller fires the injectors in a specific sequence. The controller maintains an air fuel ratio of 14.7 parts air to 1 part fuel by constantly adjusting injector pulse width. Injector pulse width is the length of time the injector is open.

The engine controller adjusts injector pulse width by opening and closing the ground path to the injector. Engine RPM (speed) and manifold absolute pressure (air density) are the primary inputs that determine injector pulse width.

SYSTEM DIAGNOSIS

The engine controller tests many of its own input and output circuits. If a fault is found in a circuit, the information is stored in the memory. Fault codes can displayed using the Check Engine lamp. Also, the technician can obtain the fault description by connecting the DRB II to the vehicle.

CCD BUS


Various controllers and modules exchange information through a communications port called the CCD Bus. The engine controller transmits the check engine lamp On/Off signal, engine RPM and vehicle load information on the CCD Bus.

ENGINE CONTROLLER

The engine controller is a digital computer containing a microprocessor (Fig. 2). The controller receives input signals from various switches and sensors that are referred to as Engine Controller Inputs. Based on these inputs, the controller adjusts various engine and vehicle operations through devices that are referred to as Engine Controller Outputs.

Engine Controller Inputs:

- Air Conditioning Controls
- Battery Voltage
- Brake Switch
- Camshaft Sensor
- Crankshaft Sensor
- Coolant Temperature Sensor
- Manifold Absolute Pressure (MAP) Sensor
- Oxygen Sensor
- SCI Receive
- Speed Control System Controls
- Throttle Position Sensor

918D-48

Fig. 2 Engine Controller

• Transmission Park/Neutral Switch (automatic transmission)

- Vehicle Distance (Speed) Sensor Engine Controller Outputs:
- Air Conditioning Clutch Relay
- Alternator Field
- Automatic Idle Speed (AIS) Motor
- Auto Shutdown (ASD) and Fuel Pump Relays
- Canister Purge Solenoid
- Check Engine Lamp
- Diagnostic Connector
- Emission Maintenance Reminder (EMR) Lamp
- Fuel Injectors
- Ignition Coil
- Radiator Fan Relay
- Speed Control Solenoids
- Tachometer Output

Based on inputs it receives, the engine controller adjusts fuel injector pulse width, idle speed, ignition spark advance, ignition coil dwell and canister purge operation. The engine controller regulates the cooling fan, air conditioning and speed control systems. The controller changes alternator charge rate by adjusting the alternator field.

The engine controller adjusts injector pulse width (air-fuel ratio) based on the following inputs.

- battery voltage
- coolant temperature
- exhaust gas content (oxygen sensor)
- engine speed (crankshaft sensor)
- manifold absolute pressure
- throttle position

The engine controller adjusts ignition timing based on the following inputs.

- coolant temperature
- engine speed (crankshaft sensor)
- manifold absolute pressure
- throttle position
- transmission gear selection (park/neutral switch)

The engine controller also adjusts engine idle speed through the automatic idle speed (AIS) motor based on the following inputs.

- air conditioning select switch
- brake switch
- coolant temperature
- engine speed (crankshaft sensor)
- manifold absolute pressure
- throttle position
- transmission gear selection (park/neutral switch)
- vehicle distance (speed)

The auto shutdown (ASD) and fuel pump relays are mounted externally, but turned on and off by the engine controller through the same circuit.

The ignition pick-up signals, (camshaft and crankshaft) are sent to the engine controller. If the engine controller does not receive both signals within approximately one second of engine cranking, it deactivates the ASD relay and fuel pump relay. When these relays are deactivated, power is shut off to the fuel injector, ignition coil, oxygen sensor heating element and fuel pump.

The engine controller contains a voltage converter that changes battery voltage to a regulated 9.0 volts to power the camshaft sensor, crankshaft sensor and vehicle speed sensor. The controller also provides a 5.0 volts supply for the manifold absolute pressure sensor and throttle position sensor.

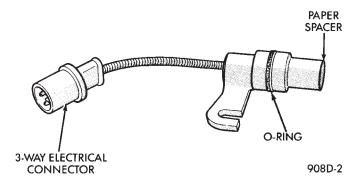
Beginning in this model year, the 3.3L engine uses sequential fuel injection. The engine controller for this model year differs from previous model years. Do not use a previous model year engine controller to test the system.

AIR CONDITIONING SWITCH SENSE—ENGINE CONTROLLER INPUT

When the air conditioning or defrost switch is put in the ON position and the low pressure and high pressure switches are closed, the engine controller receives an input for air conditioning. After receiving this input, the engine controller activates the A/C compressor clutch by grounding the A/C clutch relay. The engine controller also adjusts idle speed to a scheduled RPM to compensate for increased engine load.

BATTERY VOLTAGE—ENGINE CONTROLLER INPUT

The engine controller monitors the battery voltage input to determine fuel injector pulse width and alternator field control.


If battery voltage is low the engine controller will increase injector pulse width (period of time that the injector is energized).

BRAKE SWITCH—ENGINE CONTROLLER INPUT

When the brake switch is activated, the engine controller receives an input indicating that the brakes are being applied. After receiving this input the engine controller maintains idle speed to a scheduled RPM through control of the Automatic Idle Speed Motor. The brake switch is mounted on the brake pedal support bracket.

CAMSHAFT SENSOR—ENGINE CONTROLLER IN-PUT

Fuel injection synchronization and cylinder identification is provided through the camshaft reference sensor (Fig. 3). The sensor generates pulses that are the input sent to the engine controller. The engine controller interprets the camshaft sensor input along with the crankshaft sensor input to determine crankshaft position. The engine controller uses crankshaft position reference to determine injector sequence and ignition timing.

Fig. 3 Camshaft Sensor

The camshaft sensor senses when a slot in the camshaft gear passes beneath it (Fig. 4). When a slot is sensed, the input voltage from the sensor to the engine controller switches from high (5 volts) to low (less than .3 volts). As the slot or window passes, the input voltage is switched back to high (5 volts).

The camshaft sensor is mounted to the top of the timing case cover (Fig. 5). The bottom of the sensor is positioned above the camshaft sprocket. The distance between the bottom of sensor and the camshaft sprocket is critical to the operation of the system. When servicing the camshaft sensor, refer to the Multi-Point Fuel Injection Service Procedures—3.3L Engine section in this Group.

COOLANT TEMPERATURE SENSOR—ENGINE CON-TROLLER INPUT

The coolant temperature sensor is a variable resistor with a range of -40°F to 265°F. The sensor is installed next to the thermostat housing (Fig. 6).

The coolant temperature sensor provides an input voltage to the engine controller. As coolant temperature varies, the sensor resistance changes resulting in a different input voltage to the engine controller.

When the engine is cold, the engine controller will demand slightly richer air-fuel mixtures and higher idle speeds until normal operating temperatures are reached.

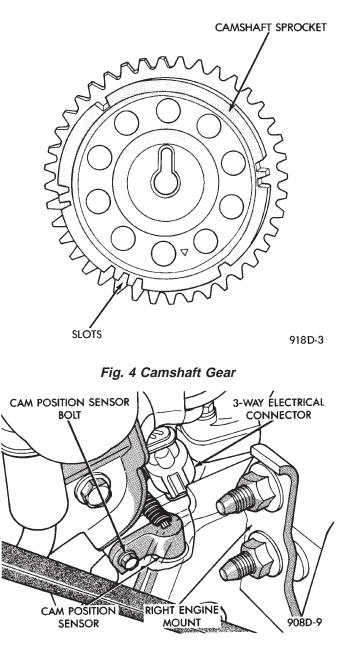


Fig. 5 Camshaft Sensor Location

The coolant sensor is also used for cooling fan control.

CRANKSHAFT SENSOR—ENGINE CONTROLLER INPUT

The crankshaft sensor (Fig. 7) senses slots cut into the transmission driveplate extension. There are a 3 sets of slots. Each set contains 4 slots, for a total of 12 slots (Fig. 8). Basic timing is set by the position of the last slot in each group. Once the engine controller senses the last slot, it determines crankshaft position (which piston will next be at TDC) from the camshaft sensor input. It may take the controller one engine revolution to determine crankshaft position.

The engine controller uses crankshaft position reference to determine injector sequence and ignition

 \star

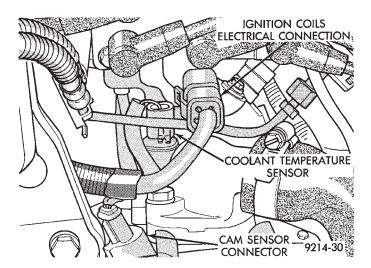


Fig. 6 Coolant Temperature Sensor

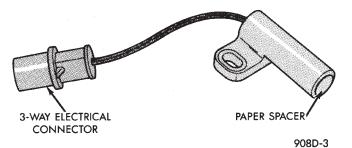


Fig. 7 Crankshaft Sensor

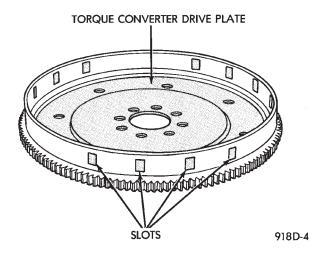


Fig. 8 Timing Slots

timing. Once crankshaft position has been determined, the engine controller begins energizing the injectors in sequence.

The crankshaft sensor is located in the transmission housing, above the vehicle distance sensor (Fig. 9). The bottom of the sensor is positioned next to the drive plate. **The distance between the bottom of sensor and the drive plate is critical to the operation of the system. When servicing the crankshaft sen**- sor, refer to the Multi-Point Fuel Injection Service Procedures—3.3L Engine section in this Group.

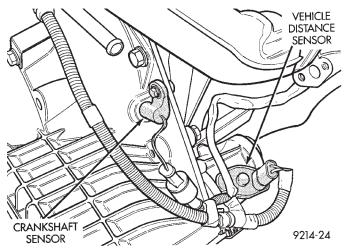


Fig. 9 Crankshaft Sensor Location

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR—ENGINE CONTROLLER INPUT

The engine controller supplies 5 volts to the MAP sensor. The Map sensor converts intake manifold pressure into voltage. The engine controller monitors the MAP sensor output voltage. As vacuum increases, MAP sensor voltage decreases proportionately. Also, as vacuum decreases, MAP sensor voltage increases proportionately.

During cranking, before the engine starts running, the engine controller determines atmospheric air pressure from the MAP sensor voltage. While the engine operates, the controller determines intake manifold pressure from the MAP sensor voltage.

Based on MAP sensor voltage and inputs from other sensors, the engine controller adjusts spark advance and the air/fuel mixture. The MAP sensor (Fig. 10) mounts to the side of the intake manifold, below the positive crankcase ventilation (PCV) valve. The sensor connects electrically to the engine controller.

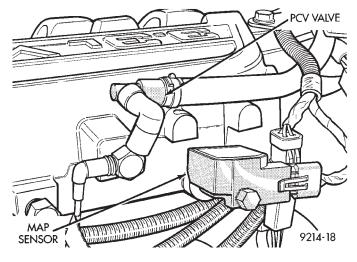


Fig. 10 Map Sensor

OXYGEN SENSOR (O₂ SENSOR)—ENGINE CON-TROLLER INPUT

The O_2 sensor is located in the exhaust manifold and provides an input voltage to the engine controller. The input tells the engine controller the oxygen content of the exhaust gas (Fig. 11). The engine controller uses this information to fine tune the air-fuel ratio by adjusting injector pulse width.

The O_2 sensor produces voltages from 0 to 1 volt, depending upon the oxygen content of the exhaust gas in the exhaust manifold. When a large amount of oxygen is present (caused by a lean air-fuel mixture), the sensor produces a low voltage. When there is a lesser amount present (rich air-fuel mixture) it pro-

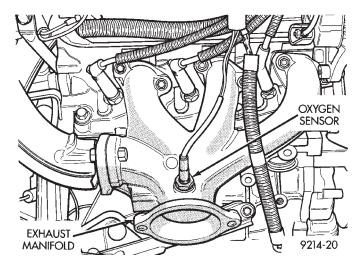


Fig. 11 Oxygen Sensor—3.3L Engine

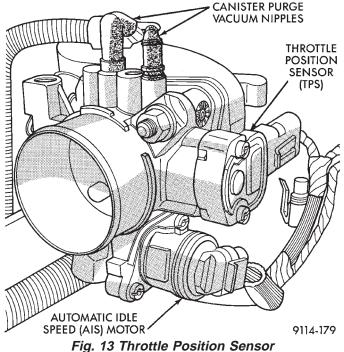
duces a higher voltage. By monitoring the oxygen content and converting it to electrical voltage, the sensor acts as a rich-lean switch. The oxygen sensor is equipped with a heating element that keeps the sensor at proper operating temperature during all operating modes. Maintaining correct sensor temperature at all times allows the system to enter into closed loop operation sooner. Also, it allows the system to remain in closed loop operation during periods of extended idle.

In "Closed Loop" operation the engine controller monitors the O_2 sensor input (along with other inputs) and adjusts the injector pulse width accordingly. During "Open Loop" operation the engine controller ignores the O_2 sensor input. The controller adjusts injector pulse width based on preprogrammed (fixed) values and inputs from other sensors.

SPEED CONTROL—ENGINE CONTROLLER INPUT

The speed control system provides four separate voltages (inputs) to the engine controller. The voltages correspond to the On/Off, Set, and Resume.

The speed control On voltage informs the engine controller that the speed control system has been activated. The speed control Set voltage informs the controller that a fixed vehicle speed has been selected. The speed control Resume voltage indicates the previous fixed speed is requested. The speed control Off voltage tells the controller that the speed control system has deactivated. Refer to Group 8H for further speed control information.


TRANSMISSION PARK/NEUTRAL SWITCH—ENGINE CONTROLLER INPUT

The park/neutral switch is located on the transmission housing (Fig. 12). It provides an input to the engine controller indicating whether the automatic transmission is in Park, Neutral, or a drive gear selection. This input is used to determine idle speed (varying with gear selection), fuel injector pulse width, and ignition timing advance. The park neutral switch is sometimes referred to as the neutral safety switch.

THROTTLE POSITION SENSOR (TPS)—ENGINE CONTROLLER INPUT

The Throttle Position Sensor (TPS) is mounted on the throttle body and connected to the throttle blade shaft (Fig. 13). The TPS is a variable resistor that provides the engine controller with an input signal (voltage) representing throttle blade position. As the position of the throttle blade changes, the resistance of the TPS changes. PARK/NEUTRAL SWITCH (BLACK) (BLACK) PRNDL SWITCH 9214-21

Fig. 12 Park Neutral Switch—4-Speed Electronic Automatic Transaxle

The engine controller supplies approximately 5 volts to the TPS. The TPS output voltage (input signal to the engine controller) represents the throttle blade position. The TPS output voltage to the controller varies from approximately 0.5 volt at minimum throttle opening (idle) to 4 volts at wide open throttle. Along with inputs from other sensors, the engine controller uses the TPS input to determine current engine operating

conditions and adjust fuel injector pulse width and

VEHICLE DISTANCE (SPEED) SENSOR—ENGINE CONTROLLER INPUT

ignition timing.

The distance sensor (Fig. 14) is located in the transmission extension housing. The sensor input is used by the engine controller to determine vehicle speed and distance traveled. The distance sensor generates 8 pulses per sensor revolution. These signals are interpreted along with a closed throttle signal from the throttle position sensor by the engine controller. The inputs are used to determine if a closed throttle deceleration or a normal idle (vehicle stopped) condition exists. Under deceleration conditions, the engine controller adjusts the AIS motor to maintain a desired MAP value. Under idle conditions, the engine controller adjusts the AIS motor to maintain a desired engine speed.

AIR CONDITIONING (A/C) CLUTCH

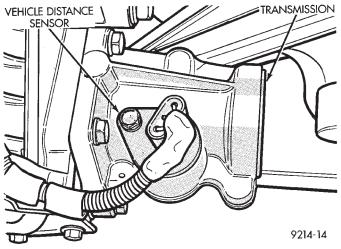
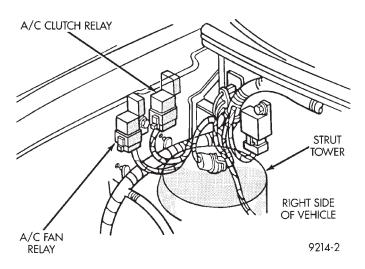


Fig. 14 Vehicle Distance (Speed) Sensor


RELAY—ENGINE CONTROLLER OUTPUT

The engine controller operates the air conditioning clutch relay ground circuit (Fig. 15). The ignition switch supplies battery voltage to the solenoid side of the relay. The A/C fan relay is operated independently of the engine controller by the Fan Cutout switch. When the A/C clutch relay energizes, battery voltage powers the A/C compressor clutch.

With the engine operating and the blower motor switch in the On position, the engine controller cycles the air conditioning clutch on and off when the A/C switch closes. When the engine controller senses low idle speeds or wide open throttle through the throttle position sensor, it de-energizes the A/C clutch relay. The relay contacts open, preventing air conditioning clutch engagement.

ALTERNATOR FIELD—ENGINE CONTROLLER OUT-PUT

The engine controller regulates the charging system voltage within a range of 12.9 to 15.0 volts. Refer to Group 8A for charging system information.

Fig. 15 Relay Identification

AUTO SHUTDOWN (ASD) RELAY AND FUEL PUMP RELAY—ENGINE CONTROLLER OUTPUT

The engine controller operates the auto shutdown (ASD) relay and fuel pump relay through one ground path. The controller operates the relays by switching the ground path on and off. Both relays turn on and off at the same time.

The ASD relay connects battery voltage to the fuel injector and ignition coil. The fuel pump relay connects battery voltage to the fuel pump and oxygen sensor heating element.

The engine controller turns the ground path off when the ignition switch is in the Off position. Both relays are off. When the ignition switch is in the On or Crank position, the engine controller monitors the crankshaft and camshaft sensor signals to determine engine speed and ignition timing (coil dwell). If the engine controller does not receive the crankshaft and camshaft signals when the ignition switch is in the Run position, it will de-energize both relays. When the relays are deenergized, battery voltage is not supplied to the fuel injector, ignition coil, fuel pump and oxygen sensor heating element.

The ASD relay and fuel pump relay are mounted on the drivers side fender well, near to the engine controller (Fig. 16).

AUTOMATIC IDLE SPEED (AIS) MOTOR—ENGINE CONTROLLER OUTPUT

The idle speed stepper (AIS) motor is mounted on the throttle body. The engine controller operates the AIS motor (Fig. 13). The engine controller adjusts engine idle speed through the AIS to compensate for engine load or ambient conditions.

The throttle body has an air bypass passage that provides air for the engine at idle (the throttle blade is closed). The AIS motor pintle protrudes into the air bypass passage and regulates air flow through it.

The engine controller adjusts engine idle speed by moving the AIS motor pintle in and out of the bypass

Fig. 16 Auto Shutdown Relay and Fuel Pump Relay

passage. The adjustments are based on inputs the controller receives. The inputs are from the throttle position sensor, speed sensor (distributor pick-up coil), coolant temperature sensor, and various switch operations (brake, park/neutral, air conditioning). Deceleration die out is also prevented by increasing airflow when the throttle is closed quickly after a driving (speed) condition.

CANISTER PURGE SOLENOID—ENGINE CONTROL-LER OUTPUT

Vacuum for the Evaporative Canister is controlled by the Canister Purge Solenoid (Fig. 17). The solenoid is controlled by the engine controller.

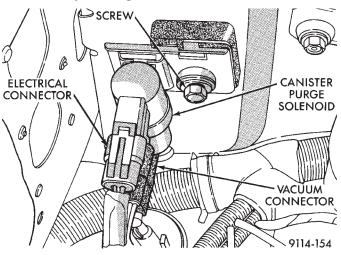


Fig. 17 Canister Purge Solenoid

The engine controller operates the solenoid by switching the ground circuit on and off based on en-

gine operating conditions. When energized, the solenoid prevents vacuum from reaching the evaporative canister. When not energized the solenoid allows vacuum to flow to the canister.

During warm-up and for a specified time period after hot starts, the engine controller grounds the purge solenoid. When grounded, the solenoid is energized and vacuum does not operate the evaporative canister valve.

The engine controller removes the ground to the solenoid when the engine reaches a specified temperature and the time delay interval has occurred. When the solenoid is de-energized, vacuum flows to the canister purge valve. Vapors are purged from the canister and flow to the throttle body.

The purge solenoid will also be energized during certain idle conditions, in order to update the fuel delivery calibration.

CHECK ENGINE LAMP—ENGINE CONTROLLER OUTPUT

The engine controller supplies a check engine lamp on/off signal to the instrument panel through the CCD Bus. The CCD Bus is a communications port. Various modules use the CCD Bus to exchange information.

The Check Engine Lamp comes on each time the ignition key is turned ON and stays on for 3 seconds as a bulb test. The Check Engine Lamp warns the operator that the engine controller has entered a Limp-in mode. During Limp-in Mode, the controller attempts to keep the system operational. The check engine lamp signals the need for immediate service. In limp-in mode, the Engine controller compensates for the failure of certain components that send incorrect signals. The controller substitutes for the incorrect signals with inputs from other sensors.

Signals that can trigger the Check Engine Lamp.

- Coolant Temperature Sensor
- Manifold Absolute Pressure Sensor
- Throttle Position Sensor
- Battery Voltage Input
- An Emission Related System (California vehicles)
- Charging system

The Check Engine Lamp can also display fault codes. Cycle the ignition switch on, off, on, off, on, within five seconds and any fault codes stored in the Engine controller will be displayed. Refer to On Board Diagnostics in the General Diagnosis—Multi-Point Fuel Injection, 3.3L Engine section of this Group for Fault Code Descriptions.

DIAGNOSTIC CONNECTOR—ENGINE CONTROLLER OUTPUT

The diagnostic connector provides the technician with the means to connect the DRB II tester to diagnosis the vehicle.

ELECTRONIC AUTOMATIC TRANSAXLE CONTROLLER—ENGINE CONTROLLER OUTPUT

The electronic automatic transaxle controller and the Engine Controller supply information to each other through the CCD Bus. The information includes engine speed and vehicle load. The engine controller uses the information when adjusting the fuel and ignition strategy.

EMISSION MAINTENANCE REMINDER (EMR) LAMP—ENGINE CONTROLLER OUTPUT

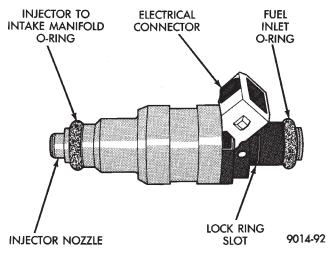
The Emissions Maintenance Reminder System (EMR) is incorporated into the engine controller. The engine controller records the vehicle mileage and stores it into memory every 8 miles. At that time, the engine controller checks for the 60,000, 82,500, and 120,000 mileage trip points. When the current mileage matches one of the above mentioned trip points, the EMR lamp on the instrument panel is activated.

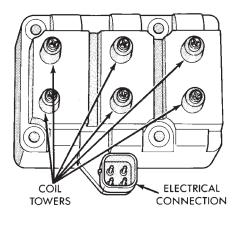
Certain components must be replaced at the indicated mileage, or when the EMR lamp stays on with the key in the **on** position, whichever occurs first. After performing the required maintenance, the EMR lamp must be reset to turn the lamp off.

For more information, refer to Group 25 or the appropriate diagnostic manual.

FUEL INJECTORS—ENGINE CONTROLLER OUTPUT

The fuel injectors are electrical solenoids (Fig. 18). The injector contains a pintle that closes off an orifice at the nozzle end. When electric current is supplied to the injector, the armature and needle move a short distance against a spring, allowing fuel to flow out the orifice. Because the fuel is under high pressure, a fine spray is developed in the shape of a hollow cone. The spraying action atomizes the fuel, adding it to the air entering the combustion chamber. The injectors are positioned in the intake manifold.




Fig. 18 Fuel Injector—3.3L Engine

The fuel injectors are operated by the engine controller. They are energized in a sequential order during all engine operating conditions except start up. The engine controller initially energizes all injectors at the same time. Once engine controller determines crankshaft position, it begins energizing the injectors in sequence.

The auto shutdown (ASD) relay supplies battery voltage to the injectors. The engine controller provides the ground path for the injectors. By switching the ground path on and off, the controller adjusts injector pulse width. Pulse width is the amount of time the injector is energized. The controller adjusts injector pulse width based on inputs it receives.

IGNITION COIL—ENGINE CONTROLLER OUTPUT

The coil assembly consists of 3 molded coils together (Fig. 19). The coil assembly is mounted on the intake manifold. High tension leads route to each cylinder from the coil. The coil fires two spark plugs every power stroke. One plug is the cylinder under compression, the other cylinder fires on the exhaust stroke. The engine controller determines which of the coils to charge and fire at the correct time.

908D-1

Fig. 19 Coil Pack—3.3L Engine

The auto shutdown (ASD) relay provides battery voltage to the ignition coil. The engine controller provides a ground contact (circuit) for energizing the coil. When the controller breaks the contact, the energy in the coil primary transfers to the secondary causing the spark. The engine controller will de-energize the ASD relay if it does not receive the crankshaft sensor and camshaft sensor inputs. Refer to Auto Shutdown (ASD) Relay/Fuel Pump Relay—Engine Controller Output in this section for relay operation.

The auto shutdown (ASD) relay supplies battery voltage to the positive terminal of the ignition coil. The engine controller de-energizes the ASD relay if it does not receive an input from the distributor pick-up. Refer to "Auto Shutdown (ASD) Relay—Engine Controller Output" in this section for relay operation.

RADIATOR FAN RELAY—ENGINE CONTROLLER OUTPUT

The radiator fan is energized by the engine controller through the radiator fan relay. The radiator fan relay is located on the drivers side fender well near to the engine controller (Fig. 16). The engine controller grounds the radiator fan relay when engine coolant reaches a predetermined temperature or when the air conditioning system is turned on.

SPEED CONTROL SOLENOIDS—ENGINE CONTROL-LER OUTPUT

The speed control vacuum and vent solenoids are operated by the engine controller. When the engine controller supplies a ground to the vacuum solenoid, the speed control system opens the throttle plate. When the controller supplies a ground to the vent solenoid, the throttle blade closes. The engine controller balances the two solenoids to maintain the set speed. Refer to Group 8H for speed control information.

TACHOMETER—ENGINE CONTROLLER OUTPUT

The engine controller supplies engine RPM to the instrument panel tachometer through the CCD Bus. The CCD Bus is a communications port. Various modules use the CCD Bus to exchange information. Refer to Group 8E for more information.

MODES OF OPERATION

As input signals to the engine controller change, the engine controller adjusts its response to output devices. For example, the engine controller must calculate a different injector pulse width and ignition timing for idle than it does for wide open throttle (WOT). There are several different modes of operation that determine how the engine controller responds to the various input signals.

There are two different areas of operation, OPEN LOOP and CLOSED LOOP.

During OPEN LOOP modes the engine controller receives input signals and responds according to preset engine controller programming. Input from the oxygen (O_2) sensor is not monitored during OPEN LOOP modes.

During CLOSED LOOP modes the engine controller does monitor the oxygen (O_2) sensor input. This input indicates to the engine controller whether or not the calculated injector pulse width results in the ideal air-fuel ratio of 14.7 parts air to 1 part fuel. By monitoring the exhaust oxygen content through the O_2 sensor, the engine controller can fine tune the injector pulse width. Fine tuning injector pulse width allows the engine controller to achieve optimum fuel economy combined with low emissions.

The 3.3L multi-point fuel injection system has the following modes of operation:

• Ignition switch ON (Zero RPM)

★

- Engine start-up
- Engine warm-up
- Cruise (Idle)
- Acceleration
- Deceleration
- Wide Open Throttle
- Ignition switch OFF

The engine start-up (crank), engine warm-up, and wide open throttle modes are OPEN LOOP modes. Under most operating conditions, the acceleration, deceleration, and cruise modes, **with the engine at operating temperature** are CLOSED LOOP modes.

IGNITION SWITCH ON (ZERO RPM) MODE

When the multi-point fuel injection system is activated by the ignition switch, the following actions occur:

• The engine controller determines atmospheric air pressure from the MAP sensor input to determine basic fuel strategy.

• The engine controller monitors the coolant temperature sensor and throttle position sensor input. The engine controller modifies fuel strategy based on this input.

When the key is in the ON position and the engine is not running (zero rpm), the auto shutdown (ASD) relay and fuel pump relay are not energized. Therefore battery voltage is not supplied to the fuel pump, ignition coil, fuel injectors or oxygen sensor heating element.

ENGINE START-UP MODE

This is an OPEN LOOP mode. The following actions occur when the starter motor is engaged.

If the engine controller receives the camshaft and crankshaft signals, it energizes the auto shutdown (ASD) relay and fuel pump relay. These relays supply battery voltage to the fuel pump, fuel injectors, ignition coil, and oxygen sensor heating element. If the engine controller does not receive the camshaft and crankshaft signals within approximately one second, it deenergizes the ASD relay and fuel pump relay.

The engine controller energizes all six injectors until it determines crankshaft position from the camshaft and crankshaft signals. The controller determines crankshaft position within 1 engine revolution.

After determining crankshaft position, the controller begins energizing the injectors in sequence. The controller adjusts injector pulse width and controls injector synchronization by turning the individual ground paths to the injectors On and Off.

When the engine idles within ± 64 RPM of its target RPM, the controller compares current MAP sensor value with the atmospheric pressure value received during the Ignition Switch On (zero RPM) mode. If the controller does not detect a minimum difference between the two values, it sets a MAP fault into memory.

Once the ASD and fuel pump relays have been energized, the engine controller:

• Determines injector pulse width based on coolant temperature, manifold absolute pressure (MAP) and the number of engine revolutions since cranking was initiated.

• Monitors the coolant temperature sensor, distributor pick-up, MAP sensor, and throttle position sensor to determine correct ignition timing.

ENGINE WARM-UP MODE

This is a OPEN LOOP mode. The following inputs are received by the engine controller:

- coolant temperature
- manifold absolute pressure (MAP)
- engine speed (crankshaft position sensor)
- throttle position
- A/C switch
- battery voltage

The controller adjusts injector pulse width and controls injector synchronization by turning the individual ground paths to the injectors On and Off.

The engine controller adjusts ignition timing and engine idle speed. Engine idle speed is adjusted through the automatic idle speed motor.

CRUISE OR IDLE MODE

When the engine is at operating temperature this is a CLOSED LOOP mode. During cruising speed the following inputs are received by the engine controller:

- coolant temperature
- manifold absolute pressure
- engine speed (crankshaft position sensor)
- throttle position
- exhaust gas oxygen content
- A/C control positions
- battery voltage

The controller adjusts injector pulse width and controls injector synchronization by turning the individual ground paths to the injectors On and Off.

The engine controller adjusts engine idle speed and ignition timing. The engine controller adjusts the air/fuel ratio according to the oxygen content in the exhaust gas.

ACCELERATION MODE

This is a CLOSED LOOP mode. The engine controller recognizes an abrupt increase in throttle position or MAP pressure as a demand for increased engine output and vehicle acceleration. The engine controller increases injector pulse width in response to increased fuel demand.

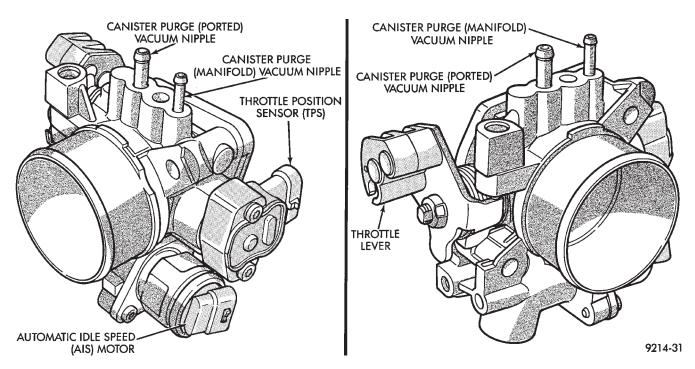


Fig. 20 Throttle Body

DECELERATION MODE

This is a CLOSED LOOP mode. During deceleration the following inputs are received by the engine controller:

- coolant temperature
- manifold absolute pressure
- engine speed
- throttle position
- exhaust gas oxygen content
- A/C control positions
- battery voltage

The engine controller may receive a closed throttle input from the throttle position sensor (TPS) when it senses an abrupt decrease in manifold pressure. This indicates a hard deceleration. The engine controller may reduce injector firing to once per engine revolution. This helps maintain better control of the air-fuel mixture (as sensed through the O_2 sensor).

During a deceleration condition, the engine controller grounds the evaporative purge solenoid. When the solenoid is grounded, the canister purge function stops.

WIDE OPEN THROTTLE MODE

This is an OPEN LOOP mode. During wide-openthrottle operation, the following inputs are received by the engine controller:

- coolant temperature
- manifold absolute pressure
- engine speed
- throttle position

When the engine controller senses wide open throttle condition through the throttle position sensor (TPS) it will: • De-energize the air conditioning relay. This disables the air conditioning system.

The exhaust gas oxygen content input is not accepted by the engine controller during wide open throttle operation. The engine controller will adjust injector pulse width to supply a predetermined amount of additional fuel.

IGNITION SWITCH OFF MODE

When the ignition switch is turned to the OFF position, the following occurs:

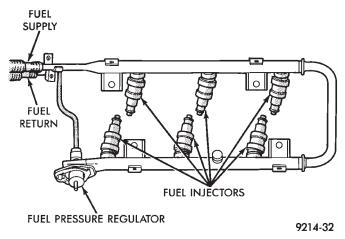
- All outputs are turned off.
- No inputs are monitored.
- The engine controller shuts down.

THROTTLE BODY

The throttle body assembly is located on the left side of the intake manifold plenum (Fig. 20). The throttle body houses the throttle position sensor and the automatic idle speed motor. Air flow through the throttle body is controlled by a cable operated throttle blade located in the base of the throttle body.

FUEL SUPPLY CIRCUIT

Fuel is pumped to the fuel rail by an electrical pump in the fuel tank. The pump inlet is fitted with a filter to prevent water and other contaminants from entering the fuel supply circuit.

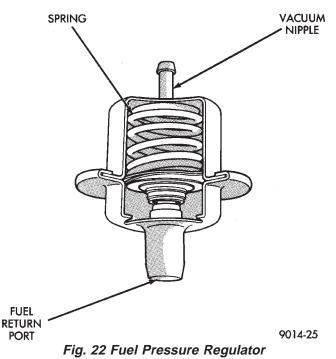

Fuel pressure is controlled to a preset level above intake manifold pressure by a pressure regulator. The regulator is mounted on the fuel rail. The regulator uses intake manifold pressure as a reference.

FUEL INJECTORS AND FUEL RAIL ASSEMBLY

Six fuel injectors are retained in the fuel rail by

 \star

lock rings (Fig. 21). The rail and injector assembly is installed in position with the injectors inserted in recessed holes in the intake manifold.


Fig. 21 Fuel Rail Assembly

FUEL PRESSURE REGULATOR

The pressure regulator is a mechanical device located on the fuel rail, downstream of the fuel injectors (Fig. 22). The regulator maintains a constant 330 kPa (48 psi) across the fuel injector tip.

The regulator contains a spring loaded rubber diaphragm that covers the fuel return port. When the fuel pump is operating, fuel flows past the injectors into the regulator, and

is restricted from flowing any further by the blocked return port. When fuel pressure reaches 330 kPa (48 psi) it pushes on the diaphragm, compresses the spring, and uncovers the fuel return port. The diaphragm and spring constantly move from an open to closed position to keep the fuel pressure constant.

3.3L MULTI-POINT FUEL INJECTION—GENERAL DIAGNOSIS

INDEX

page

93

60-Way Engine Controller Wiring Connector	103
Circuit Actuation Test Mode	
Fault Code Description	. 99

FUEL SYSTEM DIAGRAM

Fuel System Diagram

On Board Diagnostics

Refer to the Component Identification portion of this section for a more complete description of the components shown in Fig. 1.

VISUAL INSPECTION

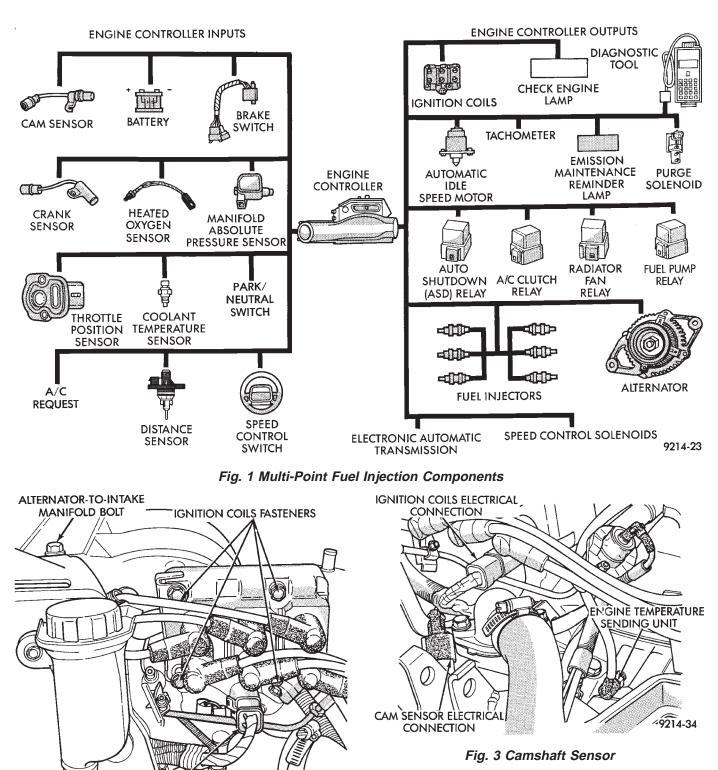
A visual inspection for loose, disconnected, or misrouted wires and hoses should be made before attempting to diagnose or service the fuel injection system. A visual check helps save unnecessary test and diagnostic time. A thorough visual inspection will include the following checks:

(1) Check ignition cable routing from the coil pack to the spark plugs. Verify the cable are routed in the correct order and are fully seated to the coil and spark plug.

State Display Test Mode
Throttle Body Minimum Air Flow Check
Procedure 102 Visual Inspection 93

(2) Check direct ignition system (DIS) coil electrical connection for damage and a complete connection to the coil (Fig. 2).

(3) Verify the camshaft sensor electrical connector is connected to the harness and not damaged (Fig. 3).


(4) Ensure the engine temperature sensor electrical connector is connected to the sensor and not damaged (Fig. 3).

(5) Ensure the coolant temperature sensor electrical connector is connected to the sensor and not damaged (Fig. 4).

(6) Verify the quick connect fuel fittings are fully inserted on the fuel supply and return tubes.

(7) Check the vacuum hose connection at the fuel pressure regulator for damage or leakage (Fig. 5).

page

9214-33

(10) Verify the vacuum connection at the purge solenoid is secure and not leaking (Fig. 7).

(11) Verify the hoses are securely attached to the vapor canister (Fig. 8).

(12) Ensure the harness connectors for the fuel injector are attached to the correct injector and not damaged.

(13) Verify the fuel injector harness and engine wiring harness connectors are fully inserted into the main wiring harness.

Fig. 2 Ignition Coils Electrical Connection

IGNITION COILS ELECTRICAL

CONNECTOR

(8) Check the oil pressure sending unit electrical connection (Fig. 6).

(9) Verify the electrical connector is attached to the Purge Solenoid (Fig. 7) and not damaged.

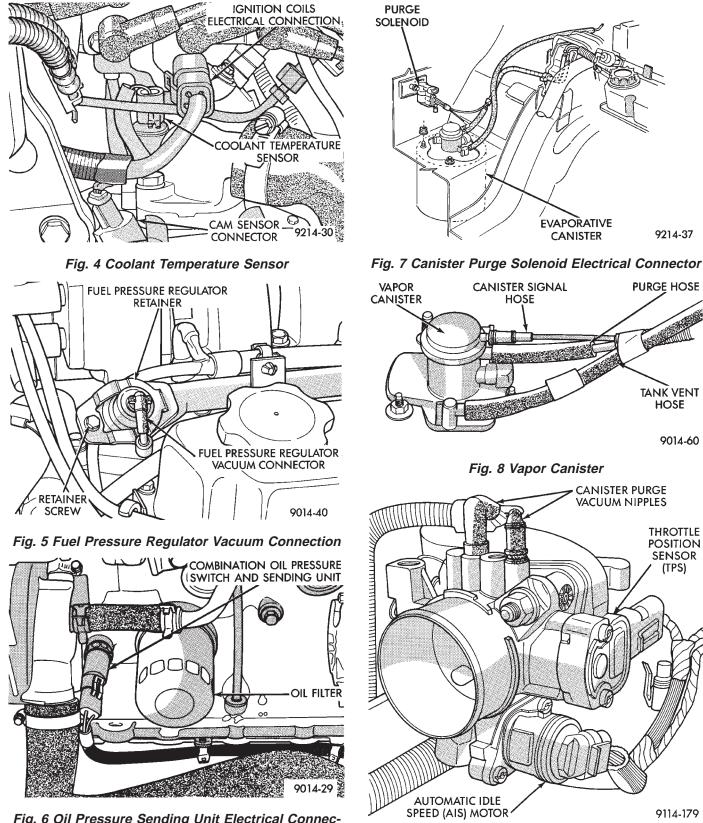


Fig. 9 Throttle Body Electrical and Vacuum Connections

(16) Inspect the park/neutral switch wiring connection for damage. Ensure the automatic transmission electrical connections are not damaged (Fig. 10).

Fig. 6 Oil Pressure Sending Unit Electrical Connection

(14) Check the vacuum connections at the throttle body (Fig. 9).

(15) Ensure the AIS motor and TPS electrical connectors are fully seated and not damaged (Fig. 9).

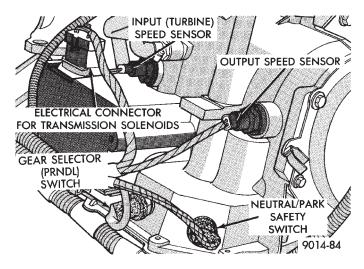


Fig. 10 Automatic Transmission Electrical Connections

(17) Check the Vacuum Hose Harness connections at the Intake Plenum (Fig. 11).

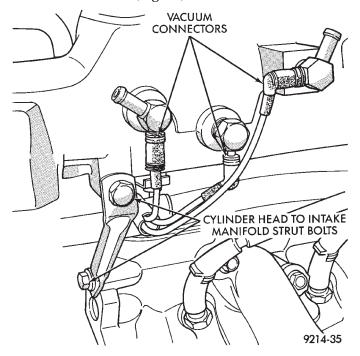
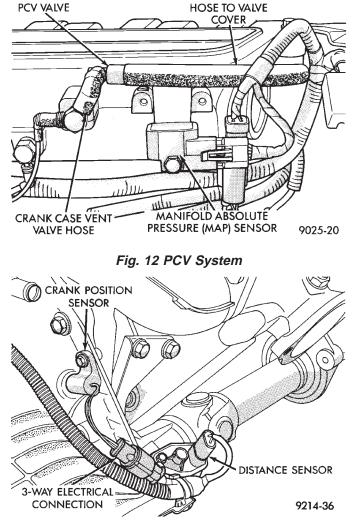


Fig. 11 Vacuum Hose Connections


(18) Inspect the PCV system connections for damage (Fig. 12).

(19) Inspect the crankshaft position sensor electrical connector for damage (Fig. 13).

(20) Ensure the distance sensor electrical connector is attached to the sensor and not damaged (Fig. 13).

(21) Verify the manifold absolute pressure (map) sensor electrical connector is attached to the sensor and not damaged (Fig. 14).

(22) Verify the engine ground strap is attached at the engine and dash panel (Fig. 14). Inspect the strap for corrosion or damage.

Fig. 13 Crankshaft Sensor and Vehicle Distance Sensor Electrical Connections

(23) Check the heated oxygen sensor electrical connector for damage (Fig. 14).

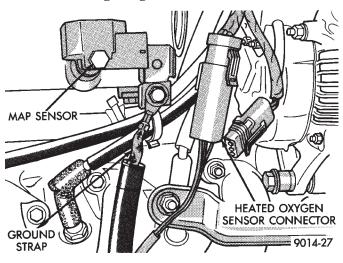
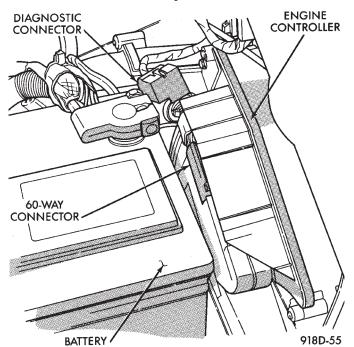



Fig. 14 MAP Sensor, Heated Oxygen Sensor, and Ground Strap

(24) Inspect the alternator wiring connections for damage.

(25) Check the accessory drive belt tension.

(26) Check the 60-way electrical connection at the Engine Controller (Fig. 15) for damage or spread terminals. Verify that the 60-way connector is fully inserted into the engine controller socket. Ensure the wires are not stretched or pulled out of the connector.

Fig. 15 Engine Controller

(27) Ensure the relays are connected to the harness connectors (Fig. 16 and Fig. 17) Inspect the connections for damage.

(28) Inspect battery cable connections for corrosion.

(29) Check the power brake booster hose connection (without anti-lock brake systems) (Fig. 18).

(30) Inspect the speed control vacuum connection (Fig. 19).

(31) Inspect hose and wiring connections at fuel pump. Check that wiring connector is making contact with terminals on pump.

ON BOARD DIAGNOSTICS

The engine controller has been programmed to monitor many different circuits of the fuel injection system. If a problem is sensed with a monitored circuit often enough to indicate an actual problem, the controller stores a fault. If the problem is repaired or ceases to exist, the engine controller cancels the Fault Code after 51 vehicle key on/off cycles.

Certain criteria must be met for a fault code to be entered into the engine controller memory. The criteria may be a specific range of engine RPM, engine temperature, and/or input voltage to the engine controller.

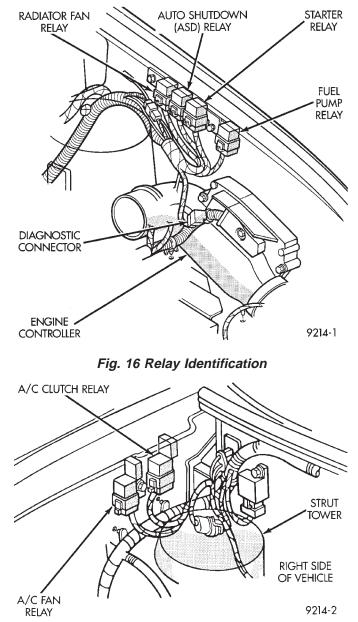


Fig. 17 A/C Clutch and A/C Fan Relays

It is possible that a fault code for a monitored circuit may not be entered into memory even though a malfunction has occurred. This may happen because one of the fault code criteria for the circuit has not been met. **For example**, assume that one of the fault code criteria for the MAP sensor circuit is that the engine must be operating between 750 and 2000 RPM to be monitored for a fault code. If the MAP sensor output circuit shorts to ground when engine RPM is above 2400 RPM (resulting in a 0 volt input to the engine controller) a fault code will not be entered into memory. This is because the condition does not occur within the specified RPM range.

There are several operating conditions that the engine controller does not monitor and set fault codes for. Refer to Monitored Circuits and Non-Monitored Circuits in this section.

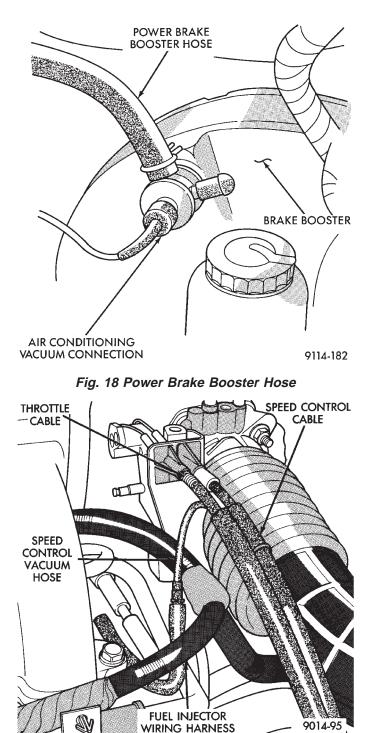


Fig. 19 Speed Control Vacuum

Stored fault codes can be displayed either by cycling the ignition key On - Off - On - Off - On, or through use of the Diagnostic Readout Box II (DRB II). The DRB II connects to the diagnostic connector in the vehicle (Fig. 15).

MONITORED CIRCUITS

The engine controller can detect certain fault conditions in the fuel injection system.

Open or Shorted Circuit - The engine controller can determine if the sensor output (input to controller)

is within proper range. Also, the controller can determine if the circuit is open or shorted.

Output Device Current Flow - The engine controller senses whether the output devices are hooked up. If there is a problem with the circuit, the controller senses whether the circuit is open, shorted to ground, or shorted high.

Oxygen Sensor - The engine controller can determine if the oxygen sensor is switching between rich and lean once the system has entered closed loop. Refer to Modes of Operation in this section for an explanation of closed loop operation.

NON-MONITORED CIRCUITS

The engine controller does not monitor the following circuits, systems and conditions that could have malfunctions that result in driveability problems. Fault codes may not be displayed for these conditions. However, problems with these systems may cause fault codes to be displayed for other systems. For example, a fuel pressure problem will not register a fault directly, but could cause a rich or lean condition. This could cause an oxygen sensor fault to be stored in the engine controller.

Fuel Pressure - Fuel pressure is controlled by the vacuum assisted fuel pressure regulator. The engine controller cannot detect a clogged fuel pump inlet filter, clogged in-line fuel filter, or a pinched fuel supply or return line. However, these could result in a rich or lean condition causing an oxygen sensor fault to be stored in the engine controller.

Secondary Ignition Circuit - The engine controller cannot detect an inoperative ignition coil, fouled or worn spark plugs, ignition cross firing, or open spark plug cables.

Engine Timing - The engine controller cannot detect an incorrectly indexed timing chain, camshaft sprocket and crankshaft sprocket. However, these could result in a rich or lean condition causing an oxygen sensor fault to be stored in the engine controller.

Cylinder Compression - The engine controller cannot detect uneven, low, or high engine cylinder compression.

Exhaust System - The engine controller cannot detect a plugged, restricted or leaking exhaust system.

Fuel Injector Malfunctions - The engine controller cannot determine if a fuel injector is clogged, the needle is sticking or the wrong injector is installed. However, these could result in a rich or lean condition causing an oxygen sensor fault to be stored in the engine controller.

Excessive Oil Consumption - Although the engine controller monitors exhaust stream oxygen content when the system is in closed loop, it cannot determine excessive oil consumption.

 \star

Throttle Body Air Flow - The engine controller cannot detect a clogged or restricted air cleaner inlet or filter element.

Evaporative System - The engine controller will not detect a restricted, plugged or loaded evaporative purge canister.

Vacuum Assist - Leaks or restrictions in the vacuum circuits of vacuum assisted engine control system devices are not monitored by the engine controller. However, these could result in a MAP sensor fault being stored in the engine controller.

Engine Controller System Ground - The engine controller cannot determine a poor system ground. However, a fault code may be generated as a result of this condition.

Engine Controller Connector Engagement - The engine controller cannot determine spread or damaged connector pins. However, a fault code may be generated as a result of this condition.

HIGH AND LOW LIMITS

The engine controller compares input signal voltages from each input device with established high and low limits that are programmed into it for that device. If the input voltage is not within specifications and other fault code criteria are met, a fault code will be stored in memory. Other fault code criteria might include engine RPM limits or input voltages from other sensors or switches that must be present before a fault condition can be verified.

FAULT CODE DESCRIPTION

A fault code indicates that the engine controller has recognized an abnormal condition in the system. Fault codes can be obtained from the Check Engine lamp on the Instrument Panel or from the Diagnostic Readout Box II (DRBII). Fault codes indicate the results of a failure but do not identify the failed component directly.

SYSTEM TESTS

Be sure to apply parking brake and/or block wheels before performing idle check or adjustment, or any engine running tests.

OBTAINING FAULT CODES

(1) Connect DRBII to the diagnostic connector located in the engine compartment near the driver side strut tower (Fig. 15).

(2) Start the engine if possible, cycle the transmission selector and the **A/C** switch if applicable. Shut off the engine.

(3) Turn the ignition switch on, access Read Fault Screen. Record all the fault messages shown on the DRBII. Observe the check engine lamp on the instrument panel. The lamp should light for 2 seconds then go out (bulb check).

Fault code erasure; access erase fault code data

STATE DISPLAY TEST MODE

The switch inputs used by the engine controller have only two recognized states, HIGH and LOW. For this reason, the engine controller cannot recognize the difference between a selected switch position versus an open circuit, a short circuit, or a defective switch. If the change is displayed, it can be assumed that the entire switch circuit to the engine controller is functional. From the state display screen access either State Display Inputs and Outputs or State Display Sensors.

STATE DISPLAY INPUTS AND OUTPUTS

Connect the DRB II tester to the vehicle and access the State Display screen. Then access Inputs and Outputs. The following is a list of the engine control system functions accessible through the Inputs and Outputs screen:

Park/Neutral Switch **Speed Control Resume Brake Switch** Speed Control On/Off Speed Control Set A/C Switch Sense **Z2 Voltage Sense** S/C Vent Solenoid S/C Vacuum Solenoid A/C Clutch Relay **EMR Lamp** Auto Shutdown Relay **Fuel Pump Relay Radiator Fan Relay** Purge Solenoid Check Engine Lamp

★

FAULT CODE DESCRIPTION

Fault Code	DRB Display	Description
11	No reference Signal During Cranking	No distributor reference signal detected during engine cranking.
13+**	No change in MAP from start to run	No difference recognized between the engine MAP reading and the barometric (atmospheric) pressure reading at start-up.
14+**	MAP voltage too low or	MAP sensor input below minimum acceptable voltage.
	MAP voltage too High	MAP sensor input above maximum acceptable voltage.
15**	No vehicle speed signal	No vehicle distance (speed) sensor signal detected during road load conditions.
17	Engine is cold too long	Engine coolant temperature remains below normal operating temperatures during vehicle travel (thermostat).
21**	O ₂ signal stays at center	Neither rich or lean condition detected from the oxygen sensor input.
	or O2 signal shorted to voltage	Oxygen sensor input voltage maintained above the normal operating range.
22+**	Coolant sensor voltage too high	Coolant temperature sensor input above the maximum acceptable voltage.
	or Coolant sensor voltage too low	Coolant temperature sensor input below the minimum acceptable voltage.
24+**	Throttle position sensor voltage high	Throttle position sensor input above the maximum acceptable voltage.
	or Throttle position sensor voltage low	Throttle position sensor input below the minimum acceptable voltage.
25**	Automatic idle speed motor circuits	A shorted condition detected in one or more of the AIS control circuits.
27	Injector control circuit (DRB II)	Injector output driver does not respond properly to the control signal (DRB II specifies the injector by cylinder number).
31**	Purge solenoid circuit	An open or shorted condition detected in the purge solenoid circuit.
33	A/C clutch relay circuit	An open or shorted condition detected in the A/C clutch relay circuit.
34	Speed control solenoid circuits	An open or shorted condition detected in the speed control vacuum or vent solenoid circuits.

+ Check Engine Lamp On ** Check Engine Lamp On (California Only)

 \star

FAULT CODE DESCRIPTION (CON'T)

Fault Code	DRB II Display	Description
35	Radiator fan relay circuits	An open or shorted condition detected in the radiator fan circuit
41+**	Alternator field not switching properly	An open or shorted condition detected in the alternator field control circuit.
42	Auto shutdown relay control circuit	An open or shorted condition detected in the auto shutdown relay circuit.
43+**	Ignition coil #1 primary circuit	Peak primary circuit current not achieved with maximum dwell time.
	or Ignition coil #2 primary circuit	Peak primary circuit current not achieved with maximum dwell time.
	or Ignition coil #3 primary circuit	Peak primary circuit current not achieved with maximum dwell time.
44	Battery temp voltage	An open or shorted condition exists in the coolant temperature sensor circuit or a problem exists in the engine controller's battery temperature voltage circuit.
46+**	Charging system voltage too high	Battery voltage sense input above target charging voltage during engine operation.
47+**	Charging system voltage too low	Battery voltage sense input below target charging during engine operation. Also, no significant change detected in battery voltage during active test of alternator output.
51**	O ₂ signal stays below center (lean)	Oxygen sensor signal input indicates lean air/fuel ratio condition during engine operation.
52**	O ₂ signal stays above center (rich)	Oxygen sensor signal input indicates rich air/fuel ratio condition during engine operation.
53	Internal controller	Engine controller internal fault condition detected.
54+**	No sync pick-up signal	No fuel sync signal detected during engine rotation.
62	Controller Failure EMR miles not stored	Unsuccessful attempt to update EMR milage in the controller EEPROM.
63	Controller Failure EEPROM write denied	Unsuccessful attempt to write to an EEPROM location by the engine controller.
55	N/A	Completion of fault code display on Check Engine lamp.

+ Check Engine Lamp On ** Check Engine Lamp On (California Only)

STATE DISPLAY SENSORS

Connect the DRB II tester to the vehicle and access the State Display screen. Then access Sensor Display. The following is a list of the engine control system functions accessible through the Sensor Display screen:

Battery Temp Sensor Oxygen Sensor Signal Coolant Temp Sensor Throttle Position Minimum Throttle **Battery Voltage MAP Sensor Reading AIS Motor Position Adaptive Fuel Factor Barometric Pressure** Min Airflow Idl Spd **Engine Speed DIS Sensor Status** Fault #1 Key-On Info Module Spark Advance **Speed Control Target** Fault #2 Key-on Info Fault #3 Key-on Info **Speed Control Status** Speed Control Switch Voltage **Overall Knock Retard Charging System Goal Theft Alarm Status** Map Sensor Voltage Vehicle Speed **Oxygen Sensor State** MAP Gauge Reading Throttle Opening **Total Spark Advance**

CIRCUIT ACTUATION TEST MODE

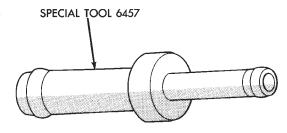
The circuit actuation test mode checks for proper operation of output circuits or devices which the engine controller cannot internally recognize. The engine controller can attempt to activate these outputs and allow an observer to verify proper operation. Most of the tests provide an audible or visual indication of device operation (click of relay contacts, spray fuel, etc.). Except for intermittent conditions, if a device functions properly during testing, assume the device, its associated wiring, and driver circuit working correctly.

OBTAINING CIRCUIT ACTUATION TEST

Connect the DRB II tester to the vehicle and access the Actuators screen. The following is a list of the engine control system functions accessible through Actuators screens:

Stop All Tests Ignition Coil #1 Ignition Coil #2 Ignition Coil #3 Fuel Injector #1 Fuel Injector #2 Fuel Injector #3 Fuel Injector #4 Fuel Injector #5 Fuel Injector #6 AIS Motor Open/Close Radiator Fan Relay A/C Clutch Relay Auto Shutdown Relay Purge Solenoid S/C Serv Solenoids Alternator Field All Solenoids/Relays ASD Fuel System Test

THROTTLE BODY MINIMUM AIR FLOW CHECK PROCEDURE


(1) Warm engine in Park or Neutral until the cooling fan has cycled on and off at least once.

(2) Ensure that all accessories are off.

(3) Shut off engine.

(4) Disconnect the PCV valve hose from the intake manifold nipple.

(5) Attach Air Metering Fitting #6457 (0.125 in. orifice) to the intake manifold PCV nipple (Fig. 20).

9114-68

Fig. 20 Air Metering Fitting #6457

(6) Disconnect the 3/16 inch idle purge line from the throttle body nipple. Cap the 3/16 inch nipple.

(7) Connect Diagnostic Readout Box II (DRB II).

(8) Restart the engine. Allow engine to idle for at least one minute.

(9) Using the DRBII, access Min. Airflow Idle Spd.

(10) The following will then occur:

- AIS motor will fully close.
- Idle spark advance will become fixed.

• Engine RPM will be displayed on DRB II.

(11) If idle RPM is within the range shown in the Idle Specification chart, throttle body minimum airflow is set correctly.

(12) If idle RPM is not within specifications, shut off the engine and clean the throttle body as follows:

(a) Remove the throttle body from engine.

IDLE SPECIFICATIONS

Odometer Reading	Idle RPM
Below 1000 Miles	650-950 RPM
Above 1000 Miles	700-950 RPM
· · · · · · · · · · · ·	9114-73

WARNING: CLEAN THROTTLE BODY IN A WELL VENTILATED AREA. WEAR RUBBER OF BUTYL GLOVES, DO NOT LET MOPAR PARTS CLEANER COME IN CONTACT WITH EYES OR SKIN. AVOID INGESTING THE CLEANER. WASH THOROUGHLY AFTER USING CLEANER.

(b) While holding the throttle open, spray the entire throttle body bore and the manifold side of the throttle plate with Mopar Parts Cleaner. **Only use Mopar Parts Cleaner to clean the throttle body**.

(c) Using a soft scuff pad, clean the top and bottom of throttle body bore and the edges and manifold side

of the throttle blade. The edges of the throttle blade and portions of the throttle bore that are closest to the throttle blade when is closed, must be free of deposits.

(d) Use compressed air to dry the throttle body.

(e) Inspect throttle body for foreign material.

(f) Install throttle body on manifold.

(g) Repeat steps 1 through 14. If the minimum air flow is still not within specifications, the problem is not caused by the throttle body.

(13) Shut off engine.

(14) Remove Air Metering Fitting #6457 from the intake manifold PCV nipple. Reinstall the PCV valve hose.

(15) Uncap the throttle body idle purge nipple and connect the idle purge line.

(16) Remove DRB II.

60-WAY ENGINE CONTROLLER WIRING CONNEC-TOR

Refer to the engine controller wiring connector diagram (Fig. 21) for wire colors and cavity numbers.

ð	ŝ	ñ	ň	4	4	4	4	4	4	4	4	4	4	2	S	5	5	ŝ	ŝ	ž	5	ŝ	ñ	ŏ	5	ž i		ß	ΰ						υЩ	
DESCRIPTION	0* MAP SENSOR	COOLANT SENSOR	T* DIRECT BATTERY	* SENSOR RETURN	T* SIGNAL GROUND	1* 5-VOLT OUTPUT (MAP AND TPS)	9-VOLT OUTPUT		A21 SUPPLY (IGNITION START/RUN SENSE)		1* POWER GROUND	1* POWER GROUND	* INJECTOR DRIVER #4	INJECTOR DRIVER #3	INJECTOR DRIVER #2	8* INJECTOR DRIVER #1	 IGNITION COIL DRIVER #2 	IGNITION COIL DRIVER #3	IGNITION COIL DRIVER #1	ALTERNATOR FIELD CONTROL		B* THROTTLE POSITION SENSOR (TPS)	* SPEED CONTROL SENSE	* CRANKSHAFT REF. PICK-UP	SCITRANSMIT	 CCD BUS (+) 	A/C SWITCH SENSE		K* BRAKE SWITCH	* PARK/NEUTRAL SWITCH	* RADIATOR FAN RELAY			3* A/C CLUTCH RELAY		
WIRE COLOR	DG/RD*	TN/BK*	RD/WT*	BK/LB*	BK/WT*	*TW/T*	0R		DB		BK/TN*	BK/TN*	LB/BR*	γL/WT*	TN	WT/DB*	DB/ML*	RD/YL*	G	DG		OR/DB*	RD/LG*	GY/BK*	ΡK	VT/BR*	BR		WT/PK*	BR/YL*	DB/PK*		TN/RD*	DB/OR*		
CAV	1	2	3	4	5	\$	~	ω	6	10	ï	12	13	14	15	16	12	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36

CAV WIRE 37 37 WIRE 37 39 GYRD* 1 38 GY HD 4 39 GYRD* 1 4 40 BR/WT* 1 4 41 BK/DG* 4 4 42 43 GYRD* 1 43 GYRD* 1 4 44 WT/BK* 6 1 51 DB/YL* 1 4 53 51 DB/YL* 1 53 53 LG/RD* 1 53 54 1 5 55 55 C/YBK* 1 55 55 C/YBK* 1 55 55 C/YBK* 1 56 YUBK* 1 1 57 56 CYPK* 1 58 1 1 1 1 16 57 1 1

 \star

Fig. 21 60—Way Engine Controller Wiring Connector

page

3.3L MULTI-POINT FUEL INJECTION—SERVICE PROCEDURES

INDEX

page

Automatic Idle Speed (AIS)	Мо	to	r		 					106
Camshaft Sensor Service										
Canister Purge Solenoid Sei	rvic	e								111
Crankshaft Timing Sensor										111
Engine Controller Service										111
Fuel Injector										
Fuel Injector Rail Assembly					 					106

THROTTLE BODY REMOVAL

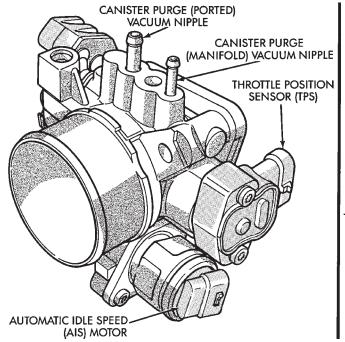
(1) Disconnect negative battery cable.

(2) Remove the air cleaner to throttle body hose clamp and the nut holding the air cleaner assembly to the air cleaner bracket. Remove the air cleaner (Fig. 1).

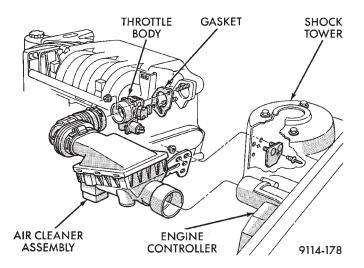
(3) Remove throttle and the speed control cables.

(4) Disconnect electrical connectors from the automatic idle speed (AIS) motor and throttle position sensor (TPS).

(5) Disconnect vacuum hoses from throttle body.


(6) Remove throttle body to intake manifold attaching nuts.

(7) Remove throttle body and gasket.


(8) Reverse the above procedure for installation.

THROTTLE BODY

When servicing throttle body components, always reassemble components with new O-rings and seals where applicable (Fig. 2). Never use lubricants on O-rings or seals, damage may result. If assembly of

Fuel Pressure Regulator	109
Fuel System Pressure Release Procedure 1	
Heated Oxygen Sensor (O ₂ Sensor) Service 1	112
Manifold Absolute Pressure (MAP) Sensor	110
Throttle Body 1	105
Throttle Body Removal 1	105
Throttle Position Sensor 1	106

Fig. 1 Throttle Body Assembly

component is difficult, use water to aid assembly. Use care when removing hoses to prevent damage to hose or hose nipple.



Fig. 2 Throttle Body

★

FUEL SYSTEM PRESSURE RELEASE PROCEDURE

The 3.3L MPI fuel system is under a constant pressure of approximately 330 kPa (48 psi). Before servicing the fuel pump, fuel lines, fuel filter, throttle body or fuel injectors, the fuel system pressure must be released.

(1) Loosen fuel filler cap to release fuel tank pressure.

(2) Disconnect injector wiring harness from engine harness (Fig. 3).

(3) Connect a jumper wire between terminal Number 1 of one injector harness and engine ground.

(4) Connect a jumper wire to the positive terminal Number 2 of the injector harness and touch the battery positive post for no longer than 5 seconds. This releases system pressure.

(5) Remove jumper wires.

(6) Continue fuel system service.

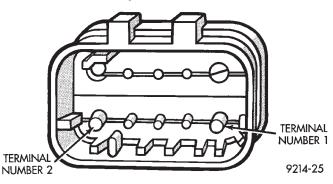


Fig. 3 Injector Harness Connector

THROTTLE POSITION SENSOR

REMOVAL

(1) Disconnect negative cable from battery.

(2) Remove electrical connector from throttle position sensor.

(3) Remove throttle position sensor mounting screws (Fig. 4).

(4) Lift throttle position sensor off throttle shaft.

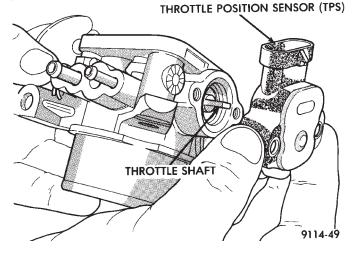


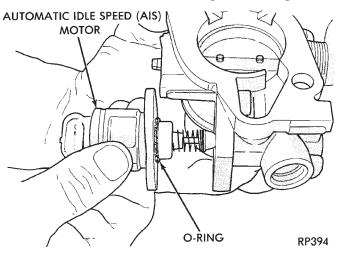
Fig. 4 Servicing Throttle Position Sensor

INSTALLATION

(1) Install throttle position sensor on throttle shaft. Install mounting screws. Tighten screw to 2 Nom (17 in. lbs.) torque.

(2) Connect electrical connector to throttle position sensor.

(3) Connect negative cable to battery.


AUTOMATIC IDLE SPEED (AIS) MOTOR

REMOVAL

(1) Disconnect negative cable from battery.

(2) Remove electrical connector from automatic idle speed (AIS) motor.

(3) Remove AIS motor mounting screws (Fig. 5).

Fig. 5 Servicing Automatic Idle Speed Motor

(4) Remove AIS motor from throttle body. Ensure the O-ring is removed with the AIS motor.

INSTALLATION

(1) The new AIS motor has a new O-ring installed on it. If pintle measures more than 1 inch (25 mm) it must be retracted. Use the DRB II AIS Motor Open/Close Test to retract the pintle (battery must be connected.)

(2) Carefully place AIS motor into throttle body.

(3) Install mounting screws. Tighten screws to 2 Nom (17 in. lbs.) torque.

(4) Connect electrical connector to AIS motor.

(5) Connect negative cable to battery.

FUEL INJECTOR RAIL ASSEMBLY

REMOVAL

(1) Perform fuel system pressure release procedure **before servicing or starting repairs.** Refer to Fuel System Pressure Release Procedure in this section.

- (2) Disconnect negative cable from battery.
- (3) Remove air cleaner and hose assembly (Fig. 1).

★

(4) Remove throttle cable (Fig. 6). Remove wiring harness from throttle cable bracket and intake manifold water tube.

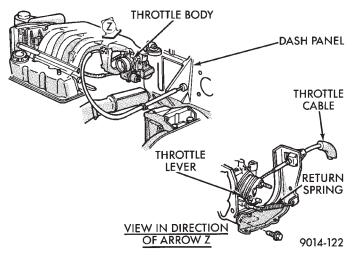
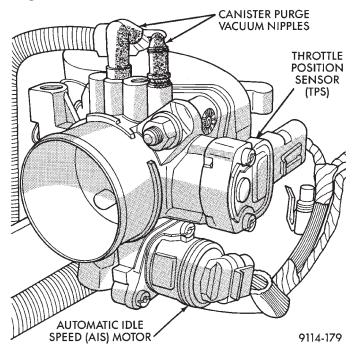



Fig. 6 Throttle Cable Attachment

(5) Disconnect automatic idles speed (AIS) motor and throttle position sensor (TPS) electrical connectors (Fig. 7). Refer to Automatic Idle Speed motor and Throttle Position Sensor in this section.

(6) Remove vacuum hose harness from throttle body (Fig. 7).

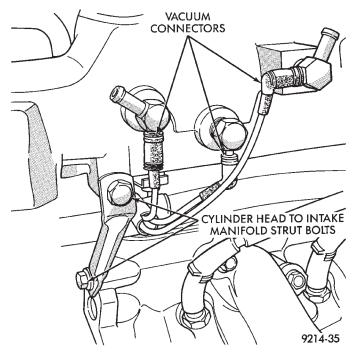


Fig. 7 Electrical and Vacuum Connection to Throttle Body

(7) Remove PCV and brake booster vacuum hoses from air intake plenum.

(8) Remove vacuum harness connectors from intake plenum (Fig. 8).

(9) Remove cylinder head to intake plenum strut (Fig. 8).

Fig. 8 Electrical and Vacuum Connections To Intake Manifold

(10) Disconnect electrical connectors from the MAP sensor and heated oxygen sensor electrical connection. Remove the engine mounted ground strap (Fig. 9).

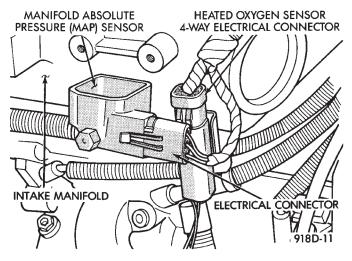


Fig. 9 MAP Sensor Electrical Connector

(11) Remove the fuel hose quick connect fittings from the chassis tubes. **Refer to Fuel Hoses, Clamps and Quick Connect Fittings in the Fuel Delivery Section of this Group.** Place a shop towel under the connections to absorb any fuel spilled. fittings.

WARNING: WRAP A SHOP TOWEL AROUND HOSES TO CATCH ANY GASOLINE SPILLAGE. (12) Remove direct ignition system (DIS) coils and alternator bracket to intake manifold bolt (Fig. 10).

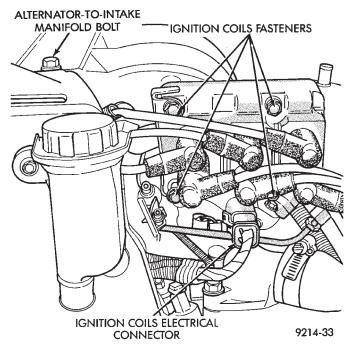


Fig. 10 Ignition Coils

(13) Remove intake mounting manifold bolts and rotate manifold back over rear valve cover (Fig. 11).

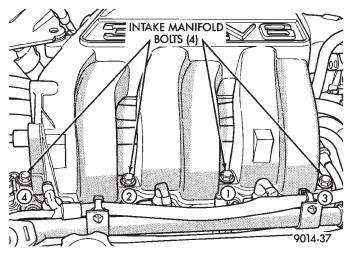


Fig. 11 Intake Manifold Bolts

(14) Cover intake manifold with suitable cover when servicing (Fig. 12).

(15) Remove vacuum harness connector from Fuel Pressure Regulator.

(16) Remove fuel tube retainer bracket screw and fuel rail attaching bolts (Fig. 12). Spread the retainer bracket to allow fuel tube removal clearance.

(17) Remove fuel rail injector wiring clip from the alternator bracket (Fig. 13).

(18) Disconnect cam sensor, coolant temperature sensor, and engine temperature sensors (Fig. 13).

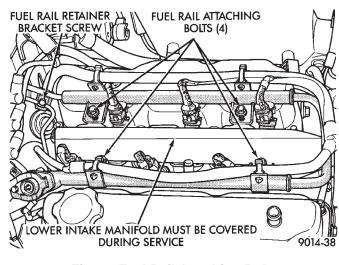


Fig. 12 Fuel Rail Attaching Bolts

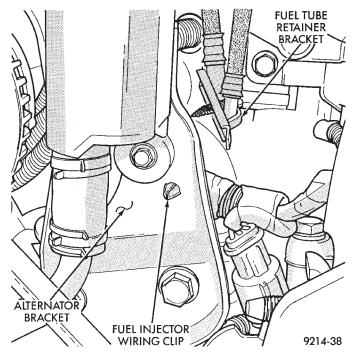


Fig. 13 Fuel Injector Wiring Clip

(19) Remove fuel rail. Be careful not to damage the injector O-rings upon removal from their ports (Fig. 14).

INSTALLATION

(1) Ensure injector holes are clean. Replace O-rings if damaged.

(2) Lube injector O-rings with a drop of clean engine oil to ease installation.

(3) Put the tip of each injector into their ports. Push the assembly into place until the injectors are seated in the ports (Fig. 14).

(4) Install the fuel rail mounting bolts. Tighten bolts to 22 Nom (200 in. lbs.) torque (Fig. 12).

(5) Install fuel tube retaining bracket screw. Tighten screw to 4 Nom (35 in. lbs.) torque.

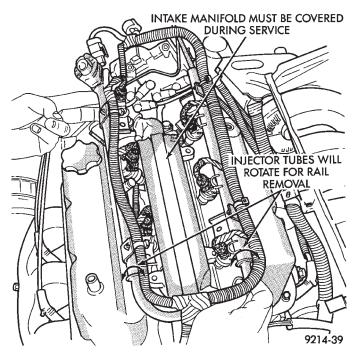


Fig. 14 Fuel Rail Removal

(6) Connect electrical connectors to cam sensor, coolant temperature sensor and engine temperature sensors.

(7) Install fuel injector harness wiring clips on the alternator bracket and intake manifold water tube (Fig. 13).

(8) Connect vacuum line to fuel pressure regulator.

(9) Remove covering on lower intake manifold and clean surface.

(10) Place intake manifold gasket on lower manifold. Put upper manifold into place and install bolts finger tight.

(11) Install the alternator bracket to intake manifold bolt and the cylinder head to intake manifold strut bolts. (Do not tighten.)

(12) Following the tightening sequence in Figure 11, tighten intake manifold bolts to 28 Nom (250 in. lbs.) torque.

(13) Tighten alternator bracket to intake manifold bolt to 54 Nom (40 ft. lbs.) torque.

(14) Tighten the cylinder head to intake manifold strut bolts to 54 Nom (40 ft. lbs.) torque (Fig. 8).

(15) Connect ground strap, MAP and heated oxygen sensor electrical connectors.

(16) Connect vacuum harness to intake plenum. Connect PCV system hoses.

(17) Clip wiring harness into the hole in the throttle cable bracket.

(18) Connect electrical connectors to the throttle position sensor (TPS) and Automatic Idle Speed (AIS) motor.

(19) Connect vacuum harness to throttle body.

(20) Install the direct ignition system (DIS) coils. Tighten fasteners to 12 Nom (105 in. lbs.) torque. (21) Install fuel hose quick connectors fittings to chassis tubes. **Refer to Fuel Hoses, Clamps and Quick Connect Fittings in the Fuel Delivery Section of this Group.** Push the fittings onto the chassis tubes until they click into place. Pull on the fittings to ensure complete insertion. Fuel supply fitting is 5/16 inch and fuel return fitting is 1/4 inch.

- (22) Install throttle cable.
- (23) Install air cleaner and hose assembly.
- (24) Connect negative cable to battery.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(25) With the ignition key in ON position, access the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.

FUEL PRESSURE REGULATOR

REMOVAL

(1) Perform fuel system pressure release procedure before attempting any repairs. Refer to Fuel Pressure Regulator Procedure in this section.

(2) Remove fuel pressure regulator vacuum connector. (Fig. 15).

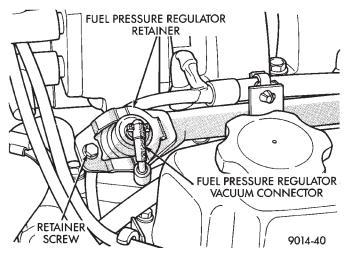


Fig. 15 Fuel Pressure Regulator

(3) Remove regulator retainer screw (Fig. 15).

(4) Remove the fuel pressure regulator retainer (Fig. 15).

WARNING: PLACE A SHOP TOWEL UNDER FUEL PRESSURE REGULATOR TO ABSORB ANY FUEL SPILLAGE.

(5) Remove fuel pressure regulator and O-rings (Fig. 16).

★

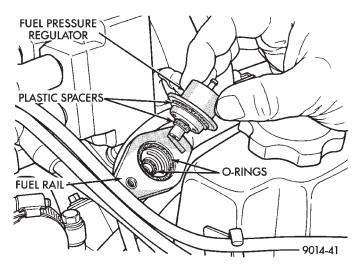
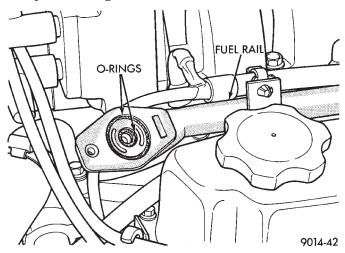



Fig. 16 Fuel Pressure Regulator Removal/Installation

INSTALLATION

(1) Ensure fuel pressure regulator has two plastic spacers (Fig. 16). Place O-rings in the fuel pressure regulator cavity (Fig. 17). Do not install O-rings on the fuel pressure regulator.

Fig. 17 Fuel Pressure Regulator O-Rings

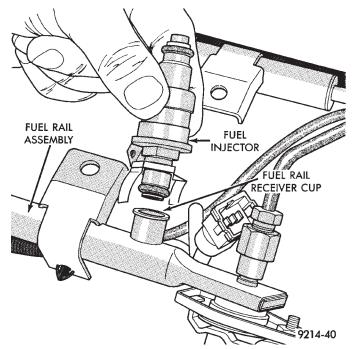
- (2) Insert fuel pressure regulator into the fuel rail.
- (3) Install fuel pressure regulator retainer (Fig. 15).

(4) Install retainer screw. Tighten to 7 Nom (60 in. lbs.) torque.

(5) Connect vacuum line to the fuel pressure regulator.

CAUTION: When using the ASD Fuel System Test, the ASD relay and fuel pump relay remain energized for 7 minutes or until the test is stopped, or until the ignition switch is turned to the Off position.

(6) With the ignition key in ON position, access the DRB II ASD Fuel System Test to pressurize the fuel system. Check for leaks.


FUEL INJECTOR

The fuel rail must be removed first. Refer to Fuel Injector Rail Assembly Removal in this section.

REMOVAL

(1) Disconnect injector wiring connector from injector.

(2) Position fuel rail assembly so that the fuel injectors are easily accessible (Fig. 18).

Fig. 18 Fuel Injector and Rail—Typical

(3) Rotate injector and pull injector out of fuel rail. The clip will stay on the injector.

(4) Check injector O-ring for damage. If O-ring is damaged, it must be replaced. If injector is reused, a protective cap must be installed on the injector tip to prevent damage. Replace the injector clip if it is damaged.

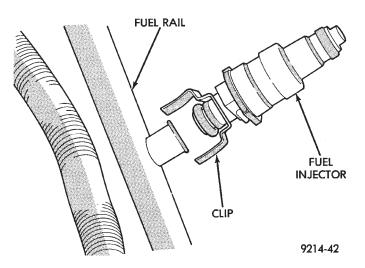
(5) Repeat for remaining injectors.

INSTALLATION

(1) Before installing an injector the rubber O-ring must be lubricated with a drop of clean engine oil to aid in installation.

(2) Install injector clip by sliding open end into **top slot** of the injector. The edge of the receiver cup will slide into the side slots of clip (Fig. 19).

(3) Install injector top end into fuel rail receiver cap. Be careful not to damage O-ring during installation (Fig. 19).


(4) Repeat steps for remaining injectors.

(5) Connect fuel injector wiring.

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR

(1) Disconnect electrical connector from MAP sensor.

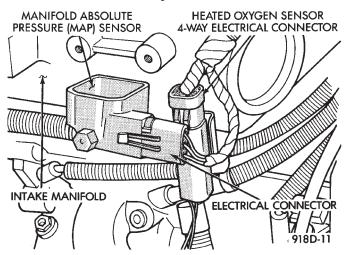

 \star

Fig. 19 Servicing Fuel Injector—Typical

(2) Remove sensor by unscrewing from the intake manifold (Fig. 20).

(3) Reverse the above procedure for installation.

Fig. 20 Manifold Absolute Pressure Sensor

CANISTER PURGE SOLENOID SERVICE

(1) Remove vacuum hose and electrical connector from solenoid (Fig. 21).

(2) Depress tab on top of solenoid and slide the solenoid downward out of mounting bracket.

(3) Reverse above procedure for installation.

ENGINE CONTROLLER SERVICE

(1) Remove air cleaner duct from engine controller.

(2) Remove battery.

(3) Remove engine controller mounting screws (Fig. 22).

(4) Remove 60-way electrical connector from engine controller.

(5) Reverse the above procedure for installation.

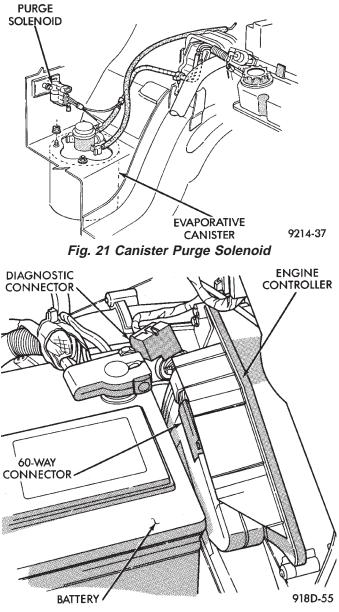


Fig. 22 Engine Controller Removal

CRANKSHAFT TIMING SENSOR

REMOVAL

(1) Disconnect crankshaft timing sensor electrical connector from the wiring harness connector (Fig. 23).

(2) Remove crankshaft timing sensor retaining bolt.

(3) Pull crankshaft timing sensor straight up out of the transaxle housing.

INSTALLATION

If the removed sensor is to be reinstalled, clean off the old spacer on the sensor face. A NEW SPACER must be attached to the sensor face before installation. If the sensor is being replaced, confirm that the paper spacer is attached to the face of the new sensor (Fig. 24).

(1) Install sensor in transaxle and push sensor down until contact is made with the drive plate.

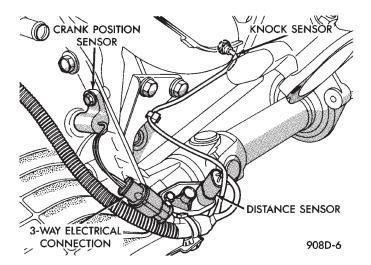


Fig. 23 Crankshaft Timing Sensor

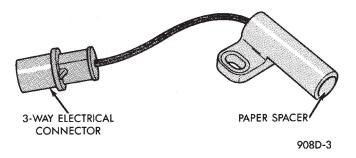


Fig. 24 Crankshaft Sensor and Spacer

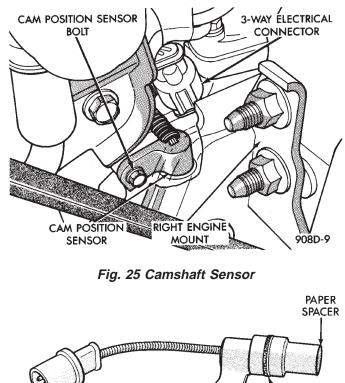
While holding the sensor in this position, install and tighten the retaining bolt to 11.9 Nom (105 in. lbs.) torque.

(2) Connect crankshaft timing sensor electrical connector to the wiring harness connector.

CAMSHAFT SENSOR SERVICE

REMOVAL

(1) Disconnect camshaft reference sensor electrical connector from the wiring harness connector (Fig. 25).


(2) Loosen camshaft timing sensor retaining bolt enough to allow slot in sensor to slide past the bolt.

(3) Pull sensor up out of the chain case cover. **Do not pull on the sensor lead.** There is an O-ring on the sensor case. The O-ring may make removal difficult. A light tap to top of sensor prior to removal may reduce force needed for removal.

INSTALLATION

If the removed sensor is reinstalled, clean off the old spacer on the sensor face. A NEW SPACER must be attached to the face before installation. Inspect O-ring for damage, replace if necessary. If the sensor is being replaced, confirm that the paper spacer is attached to the face and O-ring is positioned in groove of the new sensor (Fig. 26).

(1) Apply a couple drops of clean engine oil to the O-ring prior to installation. Install sensor in the chain

this position, install and tighten the retaining bolt 11.9
Nom (105 in. lbs.) torque.
(2) Connect camshaft reference sensor electrical connector to harness connector. Position connector away

Fig. 26 Camshaft Sensor

case cover and push sensor down until contact is made

with the cam timing gear. While holding the sensor in

3-WAY ELECTRICAL

CONNECTOR

from the accessory belt.

O-RING

908D-2

HEATED OXYGEN SENSOR (0₂ SENSOR) SERVICE

The oxygen sensor is installed in the exhaust manifold (Fig. 27).

CAUTION: Do not pull on the oxygen sensor wire when disconnecting the electrical connector.

WARNING: THE EXHAUST MANIFOLD MAY BE EX-TREMELY HOT. USE CARE WHEN SERVICING THE OXYGEN SENSOR.

(1) Disconnect oxygen sensor electrical connector (Fig. 28).

(2) Remove sensor using Tool C-4907 (Fig. 29).

When the sensor is removed, the exhaust manifold threads must be cleaned with an 18 mm X 1.5 + 6E

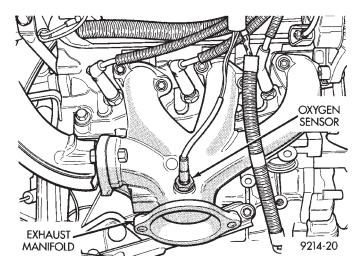


Fig. 27 Oxygen Sensor—3.3L Engine

tap. If using original sensor, coat the threads with Loctite 771-64 anti-seize compound or equivalent. New sensors are packaged with compound on the threads and no additional compound is required. The sensor must be tightened to 27 Nom (20 ft. lbs.) torque.

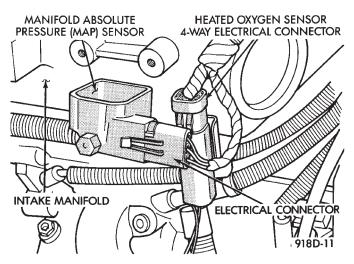
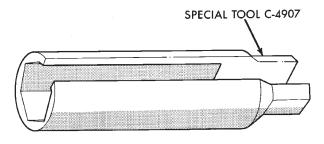



Fig. 28 Oxygen Sensor Connector

9114-106

Fig. 29 Oxygen Sensor Socket

SPECIFICATIONS

Component	Number of Terminals	Resistance at F° Thread Compound Thread Size			Torque	
Coolant Temperature	2	7,000 to 13,000 Ohms About 21°C, 70°F	Preapplied	3/8-18 NPTF	27 N·m (20 ftlbs.) 2.5L Engines	
Sensor	2	700 to 1,000 Ohms About 93°C, 200°F	(Nonrequired)		7 N∙m (60 in. lbs.) 3.0L and 3.3L Engines	
Charge Temperature	rature 2	7,000 to 13,000 Ohms About 21°C, 70°F	Preapplied	3/8-18 NPTF	5.6 N·m	
Sensor		700 to 1,000 Ohms About 93°C, 200°F	(Nonrequired)	5,0-10 14 11	(50 inIbs.)	

TEMPERATURE SENSOR SPECIFICATIONS

14 - 114 FUEL SYSTEM -

TORQUE DESCRIPTION TORQUE DESCRIPTION 3.3L crankshaft sensor 2.5L injector hold down clamp...... 5 Nom (45 in. lbs.) mounting screw 12 N•m (105 in. lbs.) 2.5L throttle body...... 20 N•m (175 in. lbs.) Accelerator pedal mounting 2.5L fuel pressure AIS motor...... 2 N•m (20 in. lbs.) 3.0L throttle body mounting Fuel tank straps 54 Nom (40 ft. lbs.) 3.0L fuel injector rail 13 Nom (115 in. lbs.) Fuel pump module clamp...... 5 Nom (40 in. lbs.) 3.3L fuel rail mounting Fuel filler tube to body..... 2 N•m (17 in. lbs.) Oxygen sensor 27 N•m (20 ft. lbs.) Throttle position sensor 2 Nom (20 in. lbs.) 3.3L fuel pressure Throttle body fuel fittings...... 20 Nom (175 in. lbs.) 3.3L camshaft sensor 9214-65 mounting screw 12 N•m (105 in. lbs.)

TORQUE

 \star